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Most of the information regarding the behavior of scalars in the turbu-

lent atmospheric boundary layer is derived from temperature measurements. It

is generally assumed that other scalars behave “in the same way”, i.e., that

they have the same statistical behavior and turbulent transport properties as

temperature. Both theoretical and experimental evidence has been presented in

the literature suggesting that this simple picture might not be valid under sta-

ble stratification conditions. The evidence, however, is often contradictory (for

instance, the ratio of the eddy diffusivities of heat and water vapor has been

found to be both larger and smaller than one in different experiments). Under

the validity of Monin-Obukhov similarity conditions (stationarity and surface

uniformity), the budgets for the turbulent temperature and humidity variances

and covariance are used to show that they indeed have a similar behavior, with

very small discrepancies due to their different molecular diffusivities. Besides

explicitly assessing the molecular effects, it is also shown how earlier theoretical

analysis can be reconciled. Analysis of atmospheric turbulence data measured



during nocturnal periods confirms this similarity, except in one night when large-

scale advective processes associated with frontal activity cannot be ruled out. It

is also shown that the dimensionless temperature and humidity statistics are

essentially constant with stability, validating the hypothesis of vertical homo-

geneity under stable conditions. Analogous results are obtained from spectral

analysis, which also shows how part of the experimental discrepancies may be

attributed to the spatial separation of the temperature and humidity sensors.

Higher-order scalar cospectra (whose integral yields the third moment) are cal-

culated for the first time, and shown to follow a Kolmogorov-Corrsin type of

power law in the wavenumber, with a −2 exponent. Radiative effects on the

temperature spectra are also studied; it is shown that under common conditions

close to the surface, radiation has a very minor effect; non-dimensionalization of

the temperature spectral budget on the other hand discloses a simple dimension-

less parameter which can be readily used to estimate the importance of radiation

on an individual basis.
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Amanhã será um lindo dia
da mais louca alegria
que se possa imaginar

Amanhã redobrada a força
prá cima que não cessa
há de vingar

Amanhã mais nenhum mistério
acima do ilusório
o astro-rei vai brilhar

Amanhã a luminosidade
alheia a qualquer vontade
há de imperar
há de imperar

Amanhã está toda a esperança
por menor que pareça
que existe é prá vicejar

Amanhã apesar de hoje
será a estrada que surge
prá se trilhar

Amanhã mesmo que uns não queiram
será de outros que esperam
ver o dia raiar

Amanhã ódios aplacados
temores abrandados
será pleno
será pleno

Guilherme Arantes
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UNITS, NOTATION AND SYMBOLS

The SI (Système International) system of units is used throughout, with

two exceptions. Some temperatures are given in degrees Celsius ( ◦C ) and specific

humidity in grams of water vapor per kilogram of air. This happens mainly in

the tables of Chapter 4. In the equations and text, however, SI units are strictly

adhered to. In both figures and tables, I follow Adkins’s (1987, p. viii) “solidus

notation”: any physical quantitiy is expressed as the product of a pure number

and a unit, such as in

u = 2.7 m s−1 ,

so that in headers of tables and axis labels the units are indicated as u / ms−1,

θ / ◦C , p / Pa, etc. In some cases, the same symbol is used for different quantities

or purposes, such as k as an index (e.g., xk) and k as wavenumber, or u as velocity

and u as a dummy integration variable. Hopefully, the context in which a symbol

appears is always clear enough so as to make its meaning unambiguous. A list

of the symbols used in this work follows.

Lowercase roman letters

a generic turbulence quantitiy (velocity, temperature, humidity, etc.)

a constant in the expression for the absorption coefficient βµ in the contin-

uum range

aj constant in the Malkmus expression for Goody’s random line model

a mean (in the turbulence sense) of a

xvii



a mean (in the turbulence sense) of a at a second point in space

a′ fluctuation (in the turbulence sense) of a

a′′ fluctuation (in the turbulence sense) of a at a second point in space

a∗ turbulence scale of a

a′i high-pass filtered data at 0.005 Hz

ãi low-pass filtered data at 0.005 Hz

ǎ′j high-pass filtered low-freqeuncy data at 0.005 Hz

˜̌aj low-pass filtered low-frequency data at 0.005 Hz

b generic turbulence quantitiy (velocity, temperature, humidity, etc.)

b constant in the expression for the absorption coefficient βµ in the contin-

uum range

bj constant in the Malkmus expression for Goody’s random line model

c generic turbulence quantitiy (velocity, temperature, humidity, etc.)

c velocity of light in the vacuum

c constant in the expression for the absorption coefficient βµ in the contin-

uum range

c a parameter in H(x)

cp specific heat of air at constant pressure

cI closure constant in spectral model for the w, u cospectrum

cII closure constant in spectral model for the w, θ cospectrum

e vapor pressure

e′ twice the turbulence kinetic energy

f a generic distribution to be Fourier-transformed

xviii



f dimensionless frequency

f two-point cross-covariance in Appendix C

f0,ab position parameter for the dimensionless cospectrum of a, b

fe low-wavenumber solution of turbulence kinetic energy and temperature

spectra

g acceleration of gravity

g two-point cross-covariance in Appendix C

gi acceleration of gravity in the i-th direction

gu high-wavenumber solution of turbulence kinetic energy spectrum

gθ high-wavenumber solution of temperature spectrum

h Planck’s constant

i
√
−1

k wavenumber vector

kk k-th component of k

k the norm of k

k Boltzmann’s constant

ℓh local lenght scale (see equation (2.16))

m a parameter in H(x)

ma sample mean of a′i

n cyclic frequency

n a parameter in H(x)

n a matrix of frequencies

p pressure

xix



p probability of occurence of a value larger than u in a statistical test

p a parameter in H(x)

p∗ pressure turbulence scale

q specific humidity

∂q′ fluctuating vertical humidity gradient

q∗ specific humidity turbulence scale

r position vector

r distance in space, the norm of r

rab correlation coefficient between a′, b′

rl l-th component of r

s direction vector in space

sk k-th component of s

s2a,1 sample variance of a′i (see equation (4.4))

s2a,2 sample variance of a′i (see equation (4.5-a))

t time

u horizontal velocity, longitudinal to the mean wind direction

u quantile of a normal probability distribution used in hypothesis testing

∂u′ fluctuating strain rate in the plane xz

ui generic turbulence quantity (see equation (2.5))

u∗ friction velocity

ûi the Fourier transform of u′i

v horizontal velocity, transversal to the mean wind direction

w vertical velocity
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w∗ convective velocity scale

x′ a first point in space

x′′ a second point in space

x horizontal coordinate axis longitudinal to the mean wind direction

x η/(20ηP )

xi coordinate axis in the i-th direction

y horizontal coordinate axis transversal to the mean wind direction

z vertical coordinate axis

zi height of the atmospheric boundary layer

Uppercase roman letters

Aa dimensionless standard deviation of a′

A⊥ an element of area in space

Bµ Planck’s blackbody function

Bof flux Bowen ratio

Bog gradient Bowen ratio

C integration constant

C capacitance of a circuit

CH heat transfer coefficient

Ci,j(k) cospectrum of u′i, u
′
j: the real part of Φi,j(k)

D integration constant

E water vapor surface flux

Ee(k) shell average of twice the turbulence kinetic energy spectrum Φe(k)

xxi



Ei,j(k) shell average of Ci,j(k) in wavenumber space

F (x) dimensionless spectral radiative dissipation function

Fa conversion constant for an integer-to-real transformation of turbulence

data

Fi,j(k1) one-dimensional (wavenumber) cross-spectrum of u′i, u
′
j (superscripts c

and q indicate the cospectrum and the quadrature spectrum, respec-

tively)

F [·] Fourier transform

G ground heat flux

G(x) x−5/3F (x)

Ga conversion constant for an integer-to-real transformation of turbulence

data

H heat surface flux

H(x) integral of G(x)

H̃(t) an approximation to H(x)

Hv virtual heat surface flux

Ia 16-bit integer storage value of a turbulence measurement

Iµ intensity of radiation at wavenumber µ

Jµ thermal emission function

K starting length of averaging for the linear filter in equation (4.3)

KE eddy diffusivity of water vapor

KF eddy diffusivity of a, associated with flux F

KH eddy diffusivity of heat

xxii



L latent heat of evaporation

L linear filter width in equation (4.3)

LB length of a block for the calculation of spectra

Lq Obukhov’s stability length for humidity effects

Lθv Obukhov’s stability length for temperature and humidity effects

Lθ Obukhov’s stability length for temperature effects

M sample size in the calculation of statistics for a short run

Mv molecular mass of water vapor

N total duration (in points) of a short run

N(k) spectral radiative dissipation function

NA Avogadro’s number

N∗ dimensionless parameter describing the relative importance of radiative

and turbulent heat transfer

N∞ asymptotic value of N(k) as k ↑ ∞

Re∗ Reynolds number

P [·] notation for probability of an event

Peθ∗ Péclet number for temperature

Peq∗ Péclet number for humidity

Qi,j(k) quadrature spectrum of u′i, u
′
j; the negative of the imaginary part of

Φi,j(k)

R resistance of a circuit

R radiative flux vector

Rk k-th component of R

xxiii



Rn net radiation at the surface

Rv gas constant for water vapor

Sa,b a matrix of cross-spectral densities

Si,j(n) one-dimensional (frequency) cross-spectrum of u′i, u
′
j (superscripts c and

q indicate the cospectrum and the quadrature spectrum, respectively)

T period

T thermodynamic temperature

T time constant of a linear filter, R–C circuit

TW period associated with low-frequency data, collected once every TW =

0.5 s

Tµ transmission at wavenumber µ

T µ(r) average transmission over wavenumber range ∆µ centered on µ

T
′

µ(r) first derivative of T µ with respect to r

T
′′

µ(r) second derivative of T µ with respect to r

Ti,i(k) fluctuating strain rate spectral transfer of ui

T characteristic time for the atmospheric boundary layer in Moeng and

Wyngaard’s pressure closure

T averaging time required to obtain a certain accuracy in the estimation of

third moments

U a random variable

Ui,i(k) mean strain rate spectral transfer of ui

W linear filter width in equation (4.7-a)

V (t) potential difference in an R–C circuit

xxiv



X starting length of averaging for the linear filter in equation (4.7-c)

Y linear filter width in equation (4.7-c)

Lowercase greek letters

α an integration variable used in Appendix B

αij inertial subrange Kolmogorov “constant” for the Eij cross-spectrum

α1
ij inertial subrange Kolmogorov “constant” for the F c

ij one-dimensional

cospectrum

β function of φτ , φH and ζ in spectral model (see equation (6.36))

β a parameter used in Appendix B

βP Planck’s coefficient

βµ absorbing coefficient at wavenumber µ

δ(·) Dirac’s delta function

δij Kronecker’s delta

ǫ desired accuracy in the estimation of third moments

ǫij viscous dissipation of the covariance of ui, uj

ǫe viscous dissipation of turbulence kinetic energy

ǫRi radiative dissipation of ui

ǫTθ total (viscous plus radiative) dissipation of temperature variance

ε(t) electromotive force in an R–C circuit

ζ Monin-Obukhov similarity variable for stability

ζq Monin-Obukhov similarity variable for stability due to humidity

ζR Schertzer and Simonin’s radiative dimensionless parameter
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ζθ Monin-Obukhov similarity variable for stability due to temperature

η dimensionless wavenumber

η1 dimensionless wavenumber corresponding to the x1 direction

ηP dimensionless Planck wavenumber

θ potential temperature

θv virtual potential temperature

θ∗ temperature turbulence scale

θv∗ virtual temperature turbulence scale

∂θ′ fluctuating vertical temperature gradient

∂θ′v fluctuating vertical virtual temperature gradient

ϑi,j phase function between u′i, u
′
j

κ von Kármán’s constant

λ wavelength associated with a period T by Taylor’s hypothesis

λ radiative wavelength

µ radiative wavenumber

νu molecular diffusivity of momentum in the air

νv molecular diffusivity of momentum in the air

νw molecular diffusivity of momentum in the air

νθ molecular diffusivity of heat in the air

νq molecular diffusivity of water vapor in the air

ξ position vector of a second point in space, in Appendix C

ξi i-th component of ξ

π the number 3.141592 . . .

xxvi



ρ air density

ρa density of absorbing material

ρv water vapor density

σ Stefan-Boltzmann’s constant

σa standard deviation of a′

τ momentum surface flux

τi integral time scale of a process

τ̃ constant in Moeng and Wyngaard’s (1986) pressure closure

τa,b dimensionless fluctuating strain rate spectral transfer

υa,b dimensionless mean strain rate spectral transfer

φab Monin-Obukhov dimensionless function for the covariance of a, b

φabc Monin-Obukhov dimensionless function for the third moment of a, b, c

φp∂a Monin-Obukhov dimensionless function for the covariance of pressure with

the gradient of a

φF Monin-Obukhov dimensionless gradient for a, associated with the flux F

φE Monin-Obukhov dimensionless gradient for humidity

φH Monin-Obukhov dimensionless gradient for temperature

φHv
Monin-Obukhov dimensionless gradient for virtual temperature

φǫab
Monin-Obukhov dimensionless function for the dissipation of the covari-

ance of a, b

φǫRθ
dimensionless dissipation of temperature variance due to radiation

φǫTθ
dimensionless dissipation of temperature variance due to radiation and

molecular diffusion

xxvii



χ an integration variable used in Appendix B

ψa,b(η) dimensionless cospectrum of a, b

ψ1
a,b(η) dimensionless one-dimensional cospectrum of a, b

ω solid angle in space

Uppercase greek letters

Γi,j coherence between u′i, u
′
j

Φi,j(k) cross-spectrum between u′i, u
′
j

ΦF12 an integral associated to the Monin-Obukhov similarity functions φF be-

tween two levels, see equation (4.10)
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Chapter 1

INTRODUCTION

This thesis deals with the turbulent transport of heat and water vapor close to

the surface of the Earth under stable conditions, i.e.; when the potential temper-

ature increases with height in the air above the surface, implying a downward

heat flux (actually, the virtual heat flux and temperature, as defined in chapter

2). It is very common for stable conditions to be associated with an upward water

vapor flux, so that heat and water vapor are transported in opposite directions.

In this case, some theoretical and experimental analyses have cast doubt on the

equality of the turbulent transport properties of these two scalars: it has been

hypothesized that their “eddy diffusivities” of semi-empirical turbulence theory

might not be equal. More generally, they would be “dissimilar” in the sense of

their dimensionless turbulent statistical properties being different. Furthermore,

it is known that long-wave radiation affects the equations for the mean and the

variance of the temperature field, but not their counterparts for the humidity

field, and this effect could be important in nocturnal periods. These questions

are dealt with here both from the point of view of theory and available equations

and that of statistical analysis of field data. We will show that there is strong evi-

dence of perfect similarity between the temperature and humidity fields, and that

1
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some of the discrepancies observed in the data can be attributed to instrumental

limitations.

1.1 The physical importance of evaporation in stable con-

ditions

The main objective of hydrologists dealing with the aerial part of the

hydrologic cycle is to estimate precipitation and evaporation to/from the Earth’s

surface and water bodies accurately. Evaporation, or surface water vapor flux, is

closely linked to surface heat and momentum fluxes, and it is usually necessary

to estimate them together. Even though most of the water vapor and heat

exchanges over land occur in unstable atmospheric conditions during the day,

there are many cases when it is important to study stable conditions. We cite,

as examples, large-scale advection of warm air masses, local advection of warm

air over colder surfaces, such as irrigation projects surrounded by arid land or

lakes, and nocturnal periods.

Thus, the arrival of a warm front and the maintenance of a temperature

inversion in the atmosphere for a long period of time, of the order of days, can

significantly worsen the air quality in urban and industrial regions, since a stable

atmosphere reduces the rate at which pollutants are transported upwards and

diffused in the atmosphere.

The quantification of evaporation from vegetated land surfaces and lakes

has been the object of continuing study (Penman, 1948; Harbeck, 1962; Brutsaert
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and Yeh, 1970; Katul and Parlange, 1992), and in arid or semi-arid regions, where

availability of water may be severely restricted, it may well be critical. Yet it

is exactly in this situation that the advection of warm air can create a locally

stable atmosphere.

As for the nocturnal evaporation, it represents a small but important

fraction of the total, as Sugita and Brutsaert (1991) have shown: correcting their

evaporation figures calculated from radiosoundings during the day to take into

account the nocturnal fluxes did improve their estimates compared to 24-hour

totals calculated by surface flux stations.

It is also worth mentioning that many greenhouse gases are released in

the Atmospheric Boundary Layer (ABL) to diffuse later into the free atmosphere

above, and this process is qualitatively similar to that described earlier, whereby

water vapor and heat fluxes have opposite directions. In the case of trace gases,

their flux at the top of the ABL is still “positive” (upwards), whereas the existence

of a strong temperature inversion capping the ABL usually implies a negative

(downwards) heat flux from the free atmosphere into the ABL, which is of the

order of 20% to 40% of the surface heat flux during the day (Deardorff, 1974;

Driedonks and Tennekes, 1984; Kustas and Brutsaert , 1987; Stull, 1988).

From the point of view of practical applications, the question of whether or

not heat and humidity are similar is therefore extremely important: often, results

obtained from temperature measurements are assumed to hold for humidity as

well. This hypothesis is also at the heart of most procedures used for calculating

surface fluxes other than the direct measurement by the eddy correlation method:
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the energy-budget Bowen ratio method, the variance method and several of the

heat and mass-transfer methods all rely on the idea that the two scalars are

similar (Angus and Watts, 1984; Wesely, 1988; Eichinger et al., 1993).

1.2 A review of experimental and theoretical facts regard-

ing the similarity of heat and water vapor in stable

condtions

Stable conditions occur most commonly during the night, when radiative

cooling of the surface produces a temperature inversion in and above the surface

layer (the layer where the turbulent fluxes do not vary by more than 10% of their

surface values). Under these condtitions, it is usually more difficult to estimate

fluxes than during the day, i.e., the empirical relationships for dimensionless

functions exhibit more scatter for stable than unstable conditions (Brutsaert,

1982, p. 71). This can be attributed in part to the order of magnitude of

the nocturnal fluxes (about 10% of the daily values), which is much closer to

the expected absolute error of the instruments. Not only that, until now the

development of fast-response humidity instruments has lagged behind that of

temperature sensors, with the result that in many cases humidity fluctuations

and humidity turbulent fluxes have not been measured at all. In the face of this,

most of the early studies about water vapor in the surface layer either assumed

it to be similar to temperature, or found little difference between them (Phelps

and Pond, 1971; Dyer, 1974; Champagne et al., 1977).
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During the last 20 years, some theoretical and experimental evidence of

dissimilarity between heat and water vapor has been brought up. Warhaft (1976)

studied the budgets of temperature and humidity fluxes with the help of closures

for the pressure-scalar correlation terms. He suggested that the eddy diffusivi-

ties for heat and humidity could be different if the correlation coefficient between

temperature and humidity fluctuations were not equal to ±1. Then, Verma et

al. (1978) and Lang et al. (1983a) measured different eddy diffusivities for heat

and humidity; however, the results of Verma et al. contradict Warhaft’s theory,

while those of Lang et al. agree only qualitatively. To make the situation a

bit more confused, there are also theoretical results pointing to the perfect sim-

ilarity between heat and humidity: Hicks and Everett (1979) noted that Verma

et al.’s results could at least be partially explained by different zero-plane dis-

placement heights for the two scalars and measurements too close to the canopy;

Brost (1979) pointed out that by using higher-order turbulence closures for the

temperature and humidity variance and covariance equations, one is led to the

conclusion that the correlation coefficient between heat and humidity is immate-

rial, and that the eddy diffusivities are equal. Then, Hill (1989a, 1989b) showed

that if Monin-Obukhov similarity theory holds for any scalar and linear combina-

tion of scalars in the surface layer, then the similarity functions for all scalars are

equal, and their correlation coefficient is either +1 or −1. Bertela (1989), who

investigated the apparent failure of the Bowen-ratio method to perform well in

some cases involving both stable and unstable conditions, attributed it to local

advection. Furthermore, if one considers the radiative term which appears in
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the variance budget for temperature but not for humidity, then it is clear that

radiation can be a source of dissimilarity. Coantic and Simonin (1984) have ar-

gued that radiative effects can be important in stable nocturnal boundary layers

when the intensity of turbulence (as measured by the turbulence kinetic energy)

is small.

To summarize, even though there are two cases (to the author’s knowl-

edge) of different eddy diffusivities for heat and humidity actually measured,

there are physical causes such as advection or different displacement heights that

might explain them, whereas the theoretical framework about the similarity of

scalars has been somewhat confusing, with less than unanimous results.

Finally, it is important to assess the behavior of temperature and humidity

keeping in mind the wealth of physical phenomena associated with scalars under

stable conditions. Examples are the existence of a buoancy subrange (Bolgiano,

1959; Weinstock, 1978; Chiba, 1989), intermittency of turbulence (Kondo et

al., 1978; Kunkel and Walters, 1982; Nappo, 1991), interaction with radiation

(Brutsaert, 1972; Coantic and Simonin, 1984), scalar mean profiles (Swinbank

and Dyer, 1967; Sheppard et al., 1972), spectral behavior as a function of stability

(Kaimal et al., 1972; Kaimal, 1973; Priestley and Hill; 1985, Rees, 1991; Wang

and Mitsuta, 1991), local advection (Lang et al., 1983b), the effect of topography

on the scalar fields (Raupauch et al., 1992) and the overall evolution of the

nocturnal stable boundary layer (Kurzeja et al., 1991; Wittich, 1991).
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1.3 Outline of work

We have tried to summarize, so far, the most important questions dealt

with in this research. Chapter 2 lays down the theoretical aspects of atmospheric

turbulence in terms of the equations for mean quantities, for second moments

and for spectra and cross-spectra. There, we unify the semi-empirical approach

to spectral and cospectral shapes in the atmospheric boundary layer that was

proposed a long time ago by Kaimal et al. (1972), Wyngaard and Coté (1972)

and Kaimal (1973), and improved upon by Moraes and Epstein (1987). Chapter 2

also contains a novel (to the author’s knowledge) study of the behavior of higher-

order scalar cospectra in the inertial subrange: the time-honored predictions of

Kolmogorov (1941) and Corrsin (1954) for the turbulence kinetic energy and

scalar spectra is extended to these higher-order cospectra (whose integral yields

the third moments of the scalars). A −2 power law in wavenumber k is predicted,

which finds confirmation in Chapter 5.

In Chapter 3, we study the controversy about the similarity of temper-

ature and humidity from a theoretical point of view. We use the variance and

covariance budgets for temperature and humidity, to show that they indeed are

“similar” in the sense defined above, except for slight differences induced by the

different molecular diffusivities; in so doing, it is also possible to reconcile some

apparent contradictions between earlier works.

Chapter 4 presents an extensive analysis of turbulence data in stable con-

ditions. We used turbulent records of vertical and horizontal wind speed, tem-
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perature and humidity measured during nocturnal periods by a team of Argonne

National Laboratory (ANL) led by Dr. Marvin Wesely, which were gratiously

made available for this research. There, we make an in-depth analysis of those

similarity functions that can be calculated with data measured at one level only;

we confirm the simple forms of the scalar budgets predicted for homogeneous

turbulence and often assumed in stable conditions, and that temperature and

humidity indeed show a high degree of similarity, except for one of the nights

analyzed.

Chapter 5 presents the results of the spectral analysis of turbulence data

from 36 52-min periods measured during 6 nights in August, 1989. In this analy-

sis, we have been able to detect dissimilarities between temperature and humidity

on the night of August 03rd, in connection with the passage of a front. For the re-

maining nights, however, temperature and humidity spectra and cospectra with

vertical velocity are remarkably similar. The coherence between them is also

very close to +1, and the phase to ±180 ◦ , as predicted by Hill (1989a) and in

chapter 3. Although coherence falls off in the higher-frequency range, this can

be attributed to the spatial separation of the sensors. Indeed, CO2 coherence

spectra measured elsewhere (Montcrieff et al., 1992) by two co-located sensors

measuring the same scalar, whose correlation with itself, obviously, is 1, show the

same behavior. Finally, the prediction that higher-order scalar cospectra have an

inertial subrange with a slope of −2, developed in chapter 2, is confirmed with

temperature data.
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In Chapter 6, we perform a somewhat after-the-fact investigation on how

much radiative effects can change the above picture of perfect similarity. A sim-

ple spectral model is used to calculate dimensionless temperature spectra as a

function both of stability and radiative parameters; in rendering the spectral

equations dimensionless we arrive at two dimensionless parameters which de-

scribe the influence of radiation and present their interpretation as the ratio of

two physical processes, as is usual. Moreover, formerly complicated equations for

the radiative terms are greatly simplified into dimensionless empirical functions,

which allows most of the results to be presented in analytical form. The main

conclusion in this chapter is that radiation is unlikely to play an important role in

the stable surface layer, but in any case we show how the importance of radiation

can easily be assessed by one of the aforementioned dimensionless parameters.

Chapter 7 summarizes the results and presents some further comments

and recommendations for future research.

Appendix A presents the connection between a linear recursive filter and

an analog sensor with limited time response.

Appendix B presents a derivation of the spectral radiative dissipation

function extensively used in chapter 6.

Appendix C presents a derivation of two-point equations of turbulent flow.



Chapter 2

ATMOSPHERIC TURBULENCE

This chapter contains most of the theoretical framework for turbulence in the

stable surface layer relevant to this research. The equations for means and sec-

ond moments of turbulent quantities, which are standard, are written down in

a compact notation used, in a different context, by Kader (1993). We intro-

duce formally the usual Monin-Obukhov assumptions of stationarity and surface

uniformity. The turbulent scales u∗, θ∗ and q∗ for velocity, temperature and

humidity are then defined, and the corresponding dimensionless equations and

Monin-Obukhov similarity functions are obtained. We then proceed to define

cross-spectra and spectra, and their corresponding equations in homogeneous

turbulent flow. The inertial subrange relationships are reviewed, and some re-

sults are extendend for the cospectrum of the fluctuation of a scalar and its

square; these spectral relationships are also cast in dimensionless form, with

some new predictions for dimensionless cospectra, and all dimensionless spectra

and cospectra in the inertial subrange are shown to depend on a few similarity

functions.

10
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2.1 The equations of turbulent flow in the surface layer

The physical quantities usually measured in the atmosphere close to the

surface are wind velocity with components (u, v, w), potential temperature θ and

specific humidity q. We shall assume that both θ and q are active scalars, being

responsible for changes in the air density ρ. That effect is incorporated into the

equations by means of the virtual potential temperature

θv ≡ θ(1 + 0.61q) . (2.1)

From here on, we will often refer to θ and θv as “temperature” and “virtual

temperature” only, dropping the adjective “potential”. Notice that close to the

surface potential temperature and temperature are nearly identical. In some

cases, when the absolute temperature is needed, it will be refered to explicitly

and denoted by T . If a is any of the variables above, we adopt the Reynolds

decomposition

a(t) = a(t) + a′(t) (2.2)

where the turbulent fluctuations a′(t) are assumed to be a stationary process

with zero mean (Lumley and Panofsky, 1964; Lumley, 1970a; Tennekes and Lum-

ley, 1972; Todorovic,1990). The corresponding view of a′(r) as a homogeneous

stochastic process in space will be adopted when working with spectral equations.

From (2.1) and (2.2) the virtual temperature fluctuations are

θ′v = (1 + 0.61q)θ′ + 0.61θq′ (2.3)

if products of fluctuations are neglected.
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In addition to the fluctuations of (u, v, w), θ, q and θv, it is also necessary

to consider the fluctuations of some derived quantities, such as the fluctuation

of twice the turbulence kinetic energy e′; the fluctuating strain rate in the plane

xz ∂u′; the fluctuating vertical temperature gradient ∂θ′, the fluctuating vertical

humidity gradient ∂q′ and the fluctuating vertical virtual temperature gradient

∂θ′v:

e′ ≡ u′u′ + v′v′ + w′w′ (2.4-a)

∂u′ ≡
(
∂ u′

∂z
+
∂ w′

∂x

)
(2.4-b)

∂θ′ ≡ ∂ θ′

∂z
(2.4-c)

∂q′ ≡ ∂ q′

∂z
(2.4-d)

∂θ′v ≡
∂ θ′v
∂z

. (2.4-e)

The equations for mean quantities and covariances in the atmosphere are

well known (Stull, 1988). We adopt the following convention:

u1 = u x1 = x (2.5-a)

u2 = v x2 = y (2.5-b)

u3 = w x3 = z (2.5-c)

u4 = θ x4 = 0 (2.5-d)

u5 = q x5 = 0 . (2.5-e)

We will also denote the molecular diffusivities of momentum, heat and water

vapor by νu = νv = νw, νθ and νq, respectively. It is then possible to write all
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equations for the mean quantities as

∂ ui
∂t

+ uk
∂ ui
∂xk

+
∂ uiuk
∂xk

= −1

ρ

∂ p

∂xi
+ gi + νui

∂2 ui
∂xk∂xk

− δi4
1

ρcp

∂ Rk

∂xk
(2.6)

where gi is the acceleration of gravity in the direction of xi, Rk is the component

of the radiative flux vector in the direction xk, p is pressure and the Coriolis

acceleration, which is very small close to the surface, is neglected. We also adopt

the convention that a repeated index k or l in a term implies summation for

k = 1, 2, 3, l = 1, 2, 3. On the other hand, the appearance of a repeated i or j

does not imply summation in the ensuing equations in this chapter. Notice that

Kronecker’s delta δi4 indicates that the divergence of the mean radiative flux

appears in the equation for u4 = θ only. The equations for the fluctuations are

∂ u′i
∂t

+ uk

∂ u′i
∂xk

+ u′k
∂ ui
∂xk

+
∂ u′iu

′
k

∂xk
= − gi

θv
θ′v −

1

ρ

∂ p′

∂xi
+ νui

∂2 u′i
∂xk∂xk

+
∂ u′iu

′
k

∂xk
− δi4

1

ρcp

∂ R′
k

∂xk
. (2.7)

Continuity of the mean and fluctuating fields is expressed by

∂ uk
∂xk

= 0 (2.8-a)

∂ u′k
∂xk

= 0 . (2.8-b)

The equations for the covariances u′iu
′
j can be obtained multiplying (2.7) by

u′j , exchanging the subscripts i and j, summing the two resulting equations and

averaging:

∂ u′iu
′
j

∂t
+ uk

∂ u′iu
′
j

∂xk
+
∂ u′iu

′
ju

′
k

∂xk
= −u′iu′k

∂ uj
∂xk
− u′ju

′
k

∂ ui
∂xk

+

− 1

θv

[
gi u

′
jθ

′
v + gj u

′
iθ

′
v

]
−
(
∂ p′

∂xi
u′j +

∂ p′

∂xj
u′i

)

− 2ǫij − δj4ǫRi − δi4ǫRj . (2.9)



14

where the terms representing viscous dissipation are

ǫij =
(νui

+ νuj
)

2

∂ u′i
∂xk

∂ u′j
∂xk

(2.10)

and the radiative dissipation is

ǫRi =
1

ρcp
u′i
∂ R′

k

∂xk
. (2.11)

In (2.9), when i = j it is understood that no sum is implied, and the

resulting equations will then mean the turbulent budget for the variance of ui.

Then, one can also set l = i = j, obtaining an equation for the budget of ulul

with l summed from 1 to 3, which is twice the mean turbulence kinetic energy

e′:

e′ = u′u′ + v′v′ + w′w′ . (2.12)

The rate of dissipation of turbulence kinetic energy ǫe is given by (2.10) for

l = i = j. The presence of the radiative terms introduces a “radiative dissipation”

as the last term in (2.9). Radiative effects in (2.11) will be present and may be

important (among others) in the cases i = j = 4 (temperature variance budget),

i = 4, j = 5 (temperature-humidity covariance budget) and i = 3, j = 4 (vertical

heat flux budget).

2.2 Stationarity, surface uniformity and homogeneity

The equations presented in section 2.1 can be considerably simplified for

many practical situations in the surface layer. We shall adopt the assumptions

that the mean fields and turbulence are quasi-stationary and that the surface is
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uniform, so that ∂(.)/∂t = ∂(.)/∂x = ∂(.)/∂y = 0 in the equations above. Under

these assumptions, and neglecting the effects of molecular diffusion in (2.6), this

equation then indicates that the turbulent fluxes do not vary with height which

is an approximation valid only in the surface layer (Brutsaert, 1982 p. 54; Stull,

1988 pp. 51–56):

∂ w′u′

∂z
= 0 (2.13-a)

∂ w′θ′

∂z
= 0 (2.13-b)

∂ w′q′

∂z
= 0 (2.13-c)

∂ w′θ′v
∂z

= 0 . (2.13-d)

where the last equation, dealing with the virtual heat flux, is a consequence of

(2.3). Under the above assumption of constant turbulent fluxes with height, the

surface fluxes of momentum, heat, water vapor and virtual heat are

τ = −ρw′u′ (2.14-a)

H = ρcp w
′θ′ (2.14-b)

E = ρw′q′ (2.14-c)

Hv = ρcp w
′θ′v = ρcp

[
(1 + 0.61q)H + 0.61θE

]
. (2.14-d)

With the same hypothesis of stationarity and surface uniformity one obtains,

from (2.9),

0 = −w′u′
∂ u

∂z
− 1

2

∂ w′e′

∂z
+

g

θv
w′θ′v −

1

ρ

∂ w′p′

∂z
− ǫe (2.15-a)

0 = −w′w′
∂ u

∂z
− ∂ w′w′u′

∂z
+

g

θv
u′θ′v +

p′

ρ
(
∂ u′

∂z
+
∂ w′

∂x
)− 2ǫwu (2.15-b)
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0 = −w′w′
∂ θ

∂z
− ∂ w′w′θ′

∂z
+

g

θv
θ′θ′v +

p′

ρ

∂ θ′

∂z
− 2ǫwθ − ǫRw (2.15-c)

0 = −w′w′
∂ q

∂z
− ∂ w′w′q′

∂z
+

g

θv
q′θ′v +

p′

ρ

∂ q′

∂z
− 2ǫwq (2.15-d)

0 = −2w′θ′
∂ θ

∂z
− ∂ w′θ′θ′

∂z
− 2 (ǫθθ + ǫRθ) (2.15-e)

0 = −2w′q′
∂ q

∂z
− ∂ w′q′q′

∂z
− 2ǫqq (2.15-f)

0 = −w′θ′
∂ q

∂z
− w′q′

∂ θ

∂z
− ∂ w′θ′q′

∂z
− 2ǫθq − ǫRq . (2.15-g)

Notice that the pressure terms for the budgets of momentum, heat and humidity

fluxes are written in a different form from the general budget for u′iu
′
j in (2.9):

they were rewritten as the sum of a pressure-diffusion and a redistribution term,

with the former neglected by an order-of-magnitude analysis (Stull, 1988 pp.

136–137). One further, very important simplification is the assumption of homo-

geneity, which is the counterpart of stationarity for a random function in space.

Thus, in homogeneous turbulence all moments u′iu
′
j , u

′
iu

′
ju

′
k , u

′
iu

′
ju

′
ku

′
l, . . ., as

well as moments of derivatives such as ∂u′i/∂xk ∂u
′
j/∂xk are constant throughout

space which immediately implies, in (2.9), that the mean gradients ∂ui/∂xk must

also be constant (Hinze, 1975 p. 322). Therefore, equations (2.13) would hold

by definition and the derivatives with respect to z of the third moments in (2.15)

would all be zero.

Now we know that the mean gradients are not constant in the surface

layer (for instance, in neutral conditions ∂u/∂z varies with the reciprocal of z),

so that homogeneity can be at best an approximation; on the other hand, if the



17

turbulent length scales are no larger than the length scales defined locally by

ℓh ≡
∂ ui

∂z
/
∂2 ui
∂z∂z

(2.16)

it may still be reasonable to assume homogeneity (Hinze, 1975 p. 322; Claussen,

1985a). The question of whether or not the third moments, pressure-velocity

and pressure-scalar covariances vary appreciably with height is more difficult to

assess. Neglecting third moments is, in a sense, a very simple way of closing

the turbulence equations or at least reducing their complexity. It has often been

assumed to be true in the surface layer (Fairall and Larsen, 1986). Wyngaard

and Coté (1971) observed an imbalance of gradient and buoyant prediction ver-

sus dissipation in the turbulence kinetic energy equation (2.15-a), but assumed

that gradient production was equal to the dissipation of temperature variance;

Bradley et al. (1981a) measured the divergence of triple moments w′θ′θ′, con-

cluding that it was small. More recently, some experiments have yielded results

suggesting that the so-called transport terms may be important in the TKE

equation (Högström, 1990; Frenzen and Voguel, 1992). In the next section, it

will be seen that under Monin-Obukhov similarity assumptions, the so-called

“z-less” stratification hypothesis is tantamount to assuming homogeneity in the

z-direction (Wyngaard, 1973), and in Chapter 4 we will use a simple technique

due to Wyngaard et al. (1978) to show that the variation of third moments with

height is indeed negligible in stable conditions during FIFE-89; the behavior of

the pressure-correlation terms, however, remains unprobed .



18

2.3 Turbulence scales and Monin-Obukhov similarity the-

ory

We define the turbulence scales u∗, θ∗, q∗, θv∗ in terms of vertical surface

fluxes according to

u∗a∗ ≡ ±w′a′ (2.17)

where a is any of the corresponding quantities above, the minus sign holding for

a = u and the plus sign holding for the remaining. For θv∗, from (2.3):

θv∗ = (1 + 0.61q)θ∗ + 0.61θq∗ (2.18)

whereas for pressure we define

p∗ ≡ ρu2∗ (2.19)

Monin-Obukhov similarity theory (MOS) (Obukhov, 1946; Businger and Yaglom,

1971) describes all mean and statistical properties of the surface layer in dimen-

sionless form with the use of these scales, plus a “natural” length scale z which

is the height above the surface. The independent variable is

ζ ≡ −κgθv∗z
θvu

2
∗

≡ z

Lθv

(2.20)

where κ = 0.41 is von Karman’s constant and Lθv is Obukhov’s stability length.

Using (2.1), it is possible to write ζ as

ζ = ζθ + ζq ≡ −
κgθ∗z

θu2∗
− 0.61

1 + 0.61q

κgq∗z

u2∗
≡ z

Lθ

+
z

Lq

(2.21)
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which shows the separate effects of temperature and humidity on the stratification

of the atmosphere. For the mean gradients, MOS predicts

±κz
a∗

∂ a

∂z
= φF (ζ) (2.22)

where the plus sign holds for a = u, and the minus sign for the remaining

quantities; the subscript F represents any of the fluxes appearing in (2.14) for

the corresponding quantity a, and φF must be determined by experiment, in

principle for each quantity a. For moments of order 2 and 3, with a and b

representing generic turbulence quantities,

a′b′

a∗b∗
= φab(ζ) (2.23-a)

a′b′c′

a∗b∗c∗
= φabc(ζ) . (2.23-b)

Notice how, if φab(ζ) is known, it is possible, say, to estimate u∗ from w′w′, θ∗ from

θ′θ′ and q∗ from q′q′. This is the basis of the so-called variance method, whereby

the fluxes in (2.14) can be indirectly estimated by variances alone, without the

need to calculate covariances (Tillman, 1972; Ariel and Nadezhina, 1976; Hicks,

1981; Wesely, 1988; Weaver, 1990; Gao et al., 1991; Lloyd et al., 1991; De Bruin

et al., 1993; Lee and Black, 1993). In the data analyzed in Chapter 4 we will see

how, under stable conditions, this aspect of MOS needs some more study: the

plots corresponding to φθθ and φqq are somewhat too scattered, even though the

mean values obtained for them are still quite reasonable. Also, in Chapter 6 we

will show how a “theoretical” φθθ can be obtained from a spectral model which

agrees quite well with the observed (mean) behavior.
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For the covariances of pressure fluctuations p′ and strain rates ∂a′ (see

(2.4) and (2.19)), the MOS prediction is:

κz p′∂a′

ρu2∗a∗
= φp∂a(ζ) (2.24)

and finally, for the rates of dissipation,

κzǫab
u∗a∗b∗

= φǫab
(ζ). (2.25)

An immediate and important consequence of MOS is that the correla-

tion coefficient rab between any two turbulent quantities is itself a dimensionless

function of stability:

rab ≡
a′b′√

a′a′
√
b′b′
≡ a′b′ /a∗b∗√

a′a′ /a∗a∗

√
b′b′ /b∗b∗

=
φab√
φaaφbb

, (2.26)

since the last term on the right-hand side of (2.26) is made up of functions of

ζ. In Chapter 4, we will see that, whereas the correlation coefficient between θ

and q can be shown to be −1 in a majority of cases in the stable surface layer,

the measured correlations rwθ and rwq show a rather large scatter when plotted

against ζ. This is, of course, a consequence of the aforementioned scatter in the

functions φθθ and φqq.

We now consider the result of making (2.15) non-dimensional. First, note

that

∂ (·)
∂z

=
∂ (·)
∂ζLθv

=
1

Lθv

∂ (·)
∂ζ

. (2.27)

We now multiply each equation in (2.15) by κz and divide by the suitable combi-

nation of turbulence scales a∗b∗ . . . which makes it dimensionless. The resulting
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equations (neglecting the radiative terms) are

φτ −
1

2
κζ
∂ φwe

∂ζ
− ζ − κζ

∂ φwp

∂ζ
− φǫe = 0 (2.28-a)

−φwwφτ − κζ
∂ φwwu

∂ζ
− ζφuθv + φp∂u − 2φǫwu

= 0 (2.28-b)

φwwφH − κζ
∂ φwwθ

∂ζ
− ζφθθv + φp∂θ − 2φǫwθ

= 0 (2.28-c)

φwwφE − κζ
∂ φwwq

∂ζ
− ζφqθv + φp∂q − 2φǫwq

= 0 (2.28-d)

2φH − κζ
∂ φwθθ

∂ζ
− 2φǫθθ

= 0 (2.28-e)

2φE − κζ
∂ φwqq

∂ζ
− 2φǫqq = 0 (2.28-f)

φE + φH − κζ
∂ φwθq

∂ζ
− 2φǫθq

= 0 . (2.28-g)

It is particularly interesting to notice how, in neutral conditions, the explicit

appearance of ζ “kills” many of the terms. In the TKE dimensionless budget,

(2.28-a), the values of φwe and φwp become immaterial, unless of course their

gradients blow up at ζ = 0. Högström (1990) advanced a somewhat contradic-

tory hypothesis, namely that very close to neutral conditions the divergence of

the third moment w′e′ is important. Seen in the light of (2.28), however, and

assuming that MOS does hold, his suggestion seems less likely.

Finally, consider the further assumption of homogeneous turbulence: it

greatly simplifies (2.28), since all the terms involving the derivatives with re-

spect to ζ then drop. Under stable condtions, it has been argued (Wyngaard,

1973) that the restoring buoancy forces limit the scale of vertical movements,

so that turbulence should become independent of z, that is to say, effectively

homogeneous in the vertical direction. This is called “z-less stratification”. Not
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surprisingly, the velocity and scalar mean gradients then become (asymptotically)

linear with z. The so-called log-linear shape of the the dimensionless gradients

φH , φE has been found to hold even for small (i.e., close to neutral) but finite

values of ζ (Brutsaert, 1982 p. 71). In Chapter 4, further experimental support

for this assumption in stable conditions is presented by showing that φwaa and

φwwa (a = θ,q) do not vary with ζ. Under the assumption of homogeneity, the

dimensionless budgets become:

−ζ + φτ − φǫe = 0 (2.29-a)

−φwwφτ − ζφuθv + φp∂u − 2φǫwu
= 0 (2.29-b)

φwwφH − ζφθθv + φp∂θ − 2φǫwθ
= 0 (2.29-c)

φwwφE − ζφqθv + φp∂q − 2φǫwq
= 0 (2.29-d)

2φH − 2φǫθθ
= 0 (2.29-e)

2φE − 2φǫqq = 0 (2.29-f)

φE + φH − 2φǫθq
= 0 . (2.29-g)

2.4 Spectra and cross spectra of turbulence

A large part of Chapters 5 and 6 is concerned with theoretical and ex-

perimental analyses of spectra and cross spectra. It is convenient to consider

them from the standpoint of both time-frequency transformations and space-

wavenumber transformations in one and three dimensions. The Fourier transform
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of a generic distribution f in each case is

F [f(t)] ≡
∫ +∞

−∞

e−2π i nt f(t) dt (2.30-a)

F [f(xl)] ≡
1

2π

∫ +∞

−∞

e− i klxl f(xl) dxl (2.30-b)

F [f(r)] ≡ 1

(2π)3

∫

R3

e− i (k·r) f(r) d3r (2.30-c)

where i =
√
−1, n is frequency, kl is wavenumber in the direction l, k =

(k1, k2, k3) is wavenumber vector and r = (x1, x2, x3) is the position vector. Al-

lowing f to be a distribution circumvents the problem of convergence of the

corresponding integrals when f (which will mean some turbulent fluctuation u′i)

does not decrease rapidly to infinity (Lesieur, 1990 p. 90). This considerably

simplifies the formalism that leads to the spectral budget equations, allowing

Fourier transforms of the turbulent fluctuations to be taken freely.

For two generic random functions u′i(r), u
′
j(r) representing a pair of tur-

bulent fluctuations in space, let

ûi(k) ≡ F [u′i(r)] (2.31-a)

ûj(k) ≡ F [u′j(r)] (2.31-b)

̂[uiuj](k) ≡ F
[
[u′iu

′
j ](r)

]
. (2.31-c)

We then define the cross-spectrum of u′i and u
′
j by

Φi,j(k) ≡
1

δ(0)
û∗i ûj (2.32)

where a∗ means the complex conjugate of the complex number a, and the overbar

means expected value over an ensemble of realizations;

δ(k) ≡
(

1

2π

)3 ∫

R3

e− i (k·r) d3r (2.33)
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is Dirac’s delta function; its appearance in (2.32) makes Φi,j dimensionally con-

sistent (notice how, in R3, δ has dimensions of volume) and in fact represents a

limit process. It can be shown that (2.32) is equivalent to defining Φi,j as the

Fourier transform of the cross-correlation function in homogeneous turbulence

(Lesieur, 1990 p. 109). The choice of this (somewhat more abstract) definition

will allow the spectral budgets to be derived rather easily in section 2.5. The cor-

responding definitions for one-dimensional time processes can be found in Bendat

and Piersol (1986 p. 130)

The cross-spectrum between u′i and the product u′ju
′
k is

Φi,jk(k) ≡
1

δ(0)
û∗i

̂[ujuk] . (2.34)

Notice that cross-spectra are hermitian: Φi,j = Φ∗
j,i and Φi,jk = Φ∗

jk,i. The

cospectrum Ci,j and the quadrature spectrum Qi,j are the real part and the

negative of the imaginary part of Φi,j,

Φi,j ≡ Ci,j − iQi,j , (2.35)

with an analogous definition holding for Φi,jk.

Again, in (2.32), if i = j we interpret it as the definition of the spectrum

of the variable ui, whereas if we choose l = i = j, then it will represent the

spectrum of twice the turbulence kinetic energy.

In practice, obtaining Φi,j(k) involves knowledge of the behavior of tur-

bulent fluctuations in 3 dimensions, while classical measurements on micromete-

orological masts or with airplanes are one-dimensional in time or space. One
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way to alleviate this problem is to work with averages over spherical shells in

wavenumber space:

Ei,j(k) ≡
∮

|k|=k

Ci,j(k) d
2k (2.36)

where d2k indicates an element of area on the surface of the sphere with center

at (0, 0, 0) and radius k in wavenumber space. Even then, it is not possible in

principle to calculate Ei,j without knowledge of the three-dimensional structure

of turbulence. The one-dimensional equivalents of Ei,j in space and time are

obtained from the one-dimensional Fourier transforms defined in (2.30). If u′i

and u′j are taken as functions of the space coordinate xl or of time t, one obtains

the corresponding one-dimensional spectra of wavenumber kl and frequency n

(Bendat and Piersol, 1986 p.132),

Fi,j(kl) ≡
{

2
δ(0)

[û∗i ûj ](kl), kl ≥ 0

0 kl < 0
(2.37-a)

Si,j(n) ≡
{

2
δ(0)

[û∗i ûj ](n), n ≥ 0
0 n < 0

. (2.37-b)

The definitions of Ei,j(k), Fi,j(k1) and Si,j(n) above are such that the

integrals from 0 to ∞ of the cospectra are equal to the covariance u′iu
′
j , i.e., if

F c
i,j ≡ Re(Fi,j) (2.38-a)

Sc
i,j ≡ Re(Si,j) , (2.38-b)

then

u′iu
′
j =

∫ ∞

k=0

Ei,j(k) dk =

∫ ∞

k1=0

F c
i,j(k1) dk1 =

∫ ∞

n=0

Sc
i,j(n) dn . (2.39)

In practice, F c
i,j(x1) and Sc

i,j(n) are often used interchangeably with the help of

Taylor’s frozen turbulence hypothesis (Lumley and Panofksky, 1964 p.56); if the
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mean velocity u at which the turbulent eddies are advected past a sensor is high

enough, then

k1 =
2π

λ
=

2π

uT
=

2πn

u
(2.40)

where λ is wavelength and T is period; using (2.40) and (2.39) we obtain

2π

u
F c
i,j

(
2πn

u

)
= Sc

i,j(n) . (2.41)

The coherence function Γi,j between two quantities u′i, u
′
j in the one-

dimensional spatial case is

Γi,j(k1) ≡
F ∗
i,j(k1)Fi,j(k1)

Fi,i(k1)Fj,j(k1)
. (2.42)

Naturally, there is an equivalent definition in terms of Si,j(n). The coherence

function can be interpreted as the square of a spectral correlation coefficient;

however, notice that it does not give any information about the phase difference

between ui and uj , since both co- and quadrature spectra are present in it; the

phase function is the argument of the complex number Fi,j,

ϑi,j(k1) ≡ arg(Fi,j) . (2.43)

For isotropic turbulence, it is possible to relate the one-dimensional spec-

tra defined in (2.37) to the three-dimensional average spectra given by (2.36); the

relations between one and three-dimensional spectra for the velocity field and a

scalar field (for instance temperature) are (Hinze, 1975 pp. 209 and 285):

Fu,u(k1) =
1

2

∫ ∞

k1

(
1− k21

k2

)
Ee(k)

dk

k
(2.44-a)

Fw,w(k1) =
1

4

∫ ∞

k1

(
1 +

k21
k2

)
Ee(k)

dk

k
(2.44-b)

Fθ,θ(k1) =

∫ ∞

k1

Eθ,θ(k)
dk

k
. (2.44-c)
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In isotropic turbulence, however, the cospectra and corresponding covari-

ances in (2.39) are identically zero for i 6= j. In the stable surface layer in general

the turbulent fluxes are not zero, so the hypothesis of isotropy seems a poor one

in this context. In fact, there is a need, not yet fully recognized, for devel-

oping more realistic models for atmospheric turbulence that take into account

anisotropy, such as that of Kristensen et al. (1988), which unfortunately does

not go so far as to introduce a formulation for the cospectra.

There are a few experiments specifically designed to test the validity of

isotropy in the atmospheric boundary layer (Kristensen et al., 1981; Webster

and Burling, 1991); it is generally accepted to hold in the high wavenumber

range of the spectrum (Kaimal et al., 1972; Van Atta, 1977). Purely isotropic

turbulence still accounts for a large part in the current research efforts (Chollet

and Lesieur, 1981; Schertzer and Simonin, 1981; Herring et al., 1982; Herring

and Métais, 1989; Métais and Herring, 1989), but there have been various efforts

to incorporate various degrees of anisotropy and inhomogeneity (Deissler, 1961;

Deissler, 1962; Domaradzki and Mellor, 1984; Nagano and Tagawa, 1990).

2.5 Spectral budgets

In much the same way as equations (2.9) describe the budgets of turbu-

lent covariances u′iu
′
j , it is possible to derive the equations for the cross-spectra

Φi,j. This is not, per se, something new; different versions of the spectral budgets

of turbulence kinetic energy and temperature have long been known (Deissler,
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1961; Deissler, 1962; Corrsin, 1964; Fox, 1964; Lumley and Panofksy, 1964; Pao,

1965; Hinze, 1975). Yet their use in specific atmospheric contexts has somewhat

lagged behind by 10 to 20 years (Straka et al., 1977; Coantic and Simonin, 1984;

Claussen, 1985a). The most complete derivations available seem to be those of

Deissler (1962) and Hinze (1975); a more concise derivation with a thorough in-

terpretation of the physical meaning of the terms responsible for redistribution of

energy (or variance) in wavenumber space can be found in Lumley and Panofsky

(1964). In these derivations, two-point equations giving the spatial covariance

function between two quantities u′i and u
′′
j at two different points in space (hence

the double prime in u′′j ) are first derived (see Appendix C); the spectral bud-

gets are then obtained by means of Fourier transforms of these cross-covariance

functions.

Since the spectral budgets are less common in the literature than equations

(2.9), they will be rederived here in full generality for all cross-spectra Φi,j . We

will also avoid the two-point equations, whose derivation is long and fastidious, by

instead Fourier-transforming the equations for the turbulent fluctuations directly;

finally, we will assume the turbulence to be homogeneous.

Thus, consider the Fourier transform of (2.7), where the last term in the

right-hand side (∂ u′iu
′
k /∂xk) is zero in homogeneous turbulence. Also, we shall

admit that the mean quantities vary linearly around the level at which (2.7) is

being considered, which we take to be rl = 0 for l = 1, 2, 3. Then,

∂ uk
∂xl

= constant (2.45-a)
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uk = uk0 +
∂ uk
∂xl

rl . (2.45-b)

We retain the full three-dimensional form above, since it will be useful in the

following; for a uniform surface, of course, the constant in (2.45-a) is zero for x1

or x2; uk0 is the value of uk at rk = 0. With these simplifications, (2.7) becomes

∂ u′i
∂t

+

(
uk0 +

∂ uk
∂xl

rl

)
∂ u′i
∂xk

+ u′k
∂ ui
∂xk

+
∂ u′iu

′
k

∂xk
= − gi

θv
θ′v −

1

ρ

∂ p′

∂xi

+ νui

∂2 u′i
∂xk∂xk

− δi4
1

ρcp

∂ R′
k

∂xk
. (2.46)

Now the Fourier transform of most of the terms above is straightforward, except

for rl ∂u
′
i/∂xk and ∂R′

k/∂xk. The Fourier transform of the divergence of the

fluctuating radiative flux vector is dealt with detail in Appendix B, and is studied

in depth in Chapter 6; here, it is sufficient to define

F
[
δi4

1

ρcp

∂ R′
k

∂xk

]
≡ N(k)δi4ûi (2.47)

where we anticipate that N is a real function of k = |k| alone due to the assump-

tion of isotropy of the longwave radiative emission. To calculate F [rl∂u
′
i/∂xk],

first notice the standard relation for the Fourier transform of a partial derivative,

F
[
∂

∂xk
f(xk)

]
= i kkF [f(xk)] . (2.48)

Then,

F
[
∂ uk
∂xl

rl
∂ u′i
∂xk

]
=

1

(2π)3

∫

R3

∂ uk
∂xl

rl
∂ u′i
∂xk

e− i (k·r) d3r
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=
∂ uk
∂xl

1

(2π)3

∫

R3

rl
∂ u′i
∂xk

e− i (k·r) d3r

= − 1

i

∂ uk
∂xl

1

(2π)3

∫

R3

∂ u′i
∂xk

∂

∂kl

[
e− i (klrl)

]
d3r

= − 1

i

∂ uk
∂xl

∂

∂kl

1

(2π)3

∫

R3

∂ u′i
∂xk

e− i (klrl) d3r (2.49)

where the integral in the last line above is the Fourier transform of ∂u′i/∂xk;

then, using (2.48),

F
[
∂ uk
∂xl

rl
∂ u′i
∂xk

]
= − 1

i

∂ uk
∂xl

∂

∂kl
[ i kkûi]

= −∂ uk
∂xl

[
δklûi + kk

∂ ûi
∂kl

]

= −∂ uk
∂xk

ûi −
∂ uk
∂xl

kk
∂ ûi
∂kl

= −∂ uk
∂xl

kk
∂ ûi
∂kl

(2.50)

because of continuity of the mean velocity field. The rest of the Fourier trans-

forms of terms in (2.46) can be calculated easily with the help of (2.48); the

result is

∂ ûi
∂t

+ uk0( i kk)ûi −
∂ uk
∂xl

kk
∂ ûi
∂xk

+
∂ ui
∂xk

ûk + ( i kk)ûiuk+

gi

θv
θ̂v +

1

ρ
( i ki)p̂+ νui

k2ûi +N(k)δi4ûi = 0 (2.51)

where all terms have been moved to the left-hand side. A totally analogous

equation holds, of course, for j instead of i; the complex conjugate (2.51) is

∂ û∗i
∂t
− uk0( i kk)û∗i −

∂ uk
∂xl

kk
∂ û∗i
∂xk

+
∂ ui
∂xk

û∗k − ( i kk) [ûiuk]
∗+

gi

θv
θ̂v

∗ − 1

ρ
( i ki)p̂

∗ + νui
k2û∗i +N(k)δi4û

∗
i = 0 . (2.52)
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The remaining is relatively simple: multiply (2.51), with j instead of i, by û∗i ,

and (2.52) by ûj, sum the two resulting equations and take the expected value;

then Φi,j appears naturally; the result is

∂ Φi,j

∂t
− ∂ uk
∂xl

kk
∂ Φi,j

∂kl
+
∂ ui
∂xk

Φk,j +
∂ uj
∂xk

Φi,k + i kk(Φi,jk − Φik,j)+

1

θv
(giΦθv,j + gjΦi,θv) +

i

ρ
(kjΦi,p − kiΦp,j) + k2(νui

+ νuj
)Φi,j+

N(k)
[
δi4 + δj4

]
Φi,j = 0 .(2.53)

The spectral budgets are considerably simpler if we assume the usual

hypothesis of stationarity and surface uniformity and look at l = i = j (which

will give the spectrum of twice the turbulence kinetic energy Φe) and i = j for

i = 4 (temperature spectrum Φθ,θ) and i = 5 (humidity spectrum Φq,q). The

pressure terms then drop and, noticing that Φi,j = Φ∗
j,i, one obtains

−∂ u
∂z

k1
∂ Φe

∂k3
+ 2

∂ u

∂z
Cw,u + 2kkQl,lk − 2

g

θv
Cw,θv + 2νuk

2Φe = 0 (2.54-a)

−∂ θ
∂z
k1
∂ Φθ,θ

∂k3
+ 2

∂ θ

∂z
Cw,θ + 2kkQθ,θk + 2

[
νθk

2 +N(k)
]
Φθ,θ = 0 (2.54-b)

−∂ q
∂z
k1
∂ Φq,q

∂k3
+ 2

∂ q

∂z
Cw,q + 2kkQq,qk + 2νqk

2Φqq = 0 (2.54-c)

which still are, however, differential equations in three-dimensional wavenumber

space. In much the same way that was done in the definition of Ei,j in (2.36),

we define what are called the fluctuating strain rate transfer Ti,i and the mean

strain rate transfer Ui,i (Lumley and Panofsky, 1964 pp. 76–82; Hinze, 1975 p.

336), with obvious equivalent definitions holding for Tl,l and Ul,l :

Ti,i(k) ≡ 2

∮

|k|=k

kkQi,ik(k)d
2k (2.55-a)

Ui,i(k) ≡
∮

|k|=k

k1
∂ Φi,i(k)

∂k3
d2k =

∂

∂k

[
1

k

∮

|k|=k

k1k3Φi,i(k)d
2k

]
(2.55-b)
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where the second equality in (2.55) can be obtained after a long integration in

spherical coordinates (Hinze, 1975 pp. 339–340). Upon integration of (2.54) over

a spherical shell in wavenumber space we obtain, finally,

2
∂ u

∂z
Ew,u −

∂ u

∂z
Ue + Te −

2g

θv
Cw,θv + 2νuk

2Ee = 0 (2.56-a)

2
∂ θ

∂z
Ew,θ −

∂ u

∂z
Uθ,θ + Tθ,θ + 2

[
νθk

2 +N(k)
]
Eθ,θ = 0 (2.56-b)

2
∂ q

∂z
Ew,q −

∂ u

∂z
Uq,q + Tq,q + 2νqk

2Eq,q = 0 . (2.56-c)

2.6 Inertial subrange behavior

One of the best known topics in turbulence theory is Kolmogorov’s predic-

tion of the behavior of the (turbulence kinetic) energy spectrum in the “inertial”

subrange. This corresponds to a range of scales much smaller that those at which

turbulence is produced (in our case, by interaction with mean gradients) and yet

much larger than those at which energy is dissipated by viscous effects. There-

fore, neither variables associated with production nor with dissipation should

matter in the inertial subrange, the only relevant ones being the wavenumber k

itself and the rate of dissipation of turbulence kinetic energy ǫe, here interpreted

as an “energy flux” cascading down length scales (Tennekes and Lumley, 1972

pp. 257–261). Corrsin (1951), Lumley (1965), Wyngaard and Coté (1972) and

Wyngaard et al. (1978) later extended this argument for the behavior of spectra
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and cospectra of scalars, and for the cospectra of vertical velocity w with u, θ

and q.

The forms predicted by dimensional analysis are of course the same for

one-dimensional (co-) spectra Fi,j(k1), which can be directly compared to mea-

surements. For horizontal and vertical velocity spectra, the inertial subrange

behavior is

Fu,u(k1) = α1
uuǫ

2/3
e k

−5/3
1 (2.57-a)

Fw,w(k1) = α1
wwǫ

2/3
e k

−5/3
1 (2.57-b)

where, for isotropic turbulence (Tennekes and Lumley, 1972 p. 273):

α1
ww =

4

3
α1
uu . (2.58)

For spectra and cospectra of temperature and humidity (Corrsin, 1951;

Wyngaard et al., 1978) one has:

Fθ,θ(k1) = α1
θθǫ

−1/3
e ǫθθk

−5/3
1 (2.59-a)

Fqq(k1) = α1
qqǫ

−1/3
e ǫqqk

−5/3
1 (2.59-b)

F c
θq(k1) = α1

θqǫ
−1/3
e ǫθqk

−5/3
1 . (2.59-c)

Equation (2.59-c), proposed by Wyngaard et al. (1978), is particularly impor-

tant: if temperature and humidity are perfectly correlated or anti-correlated,

their quadrature spectrum is zero, and α1
θθ = α1

qq = α1
θq; thus, the coherence

function is flat and equal to +1 throughout the inertial subrange. This will be
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tested with field data in Chapter 5. For the cospectra with vertical velocity

(Lumley, 1965; Wyngaard and Coté, 1972) one has:

F c
w,u(k1) = α1

wu

∂ u

∂z
ǫ1/3e k

−7/3
1 (2.60-a)

F c
w,θ(k1) = α1

wθ

∂ θ

∂z
ǫ1/3e k

−7/3
1 (2.60-b)

F c
w,q(k1) = α1

wq

∂ q

∂z
ǫ1/3e k

−7/3
1 . (2.60-c)

In principle, it should be possible to extend the same idea for higher-

order cospectra, such as F c
i,jk. The situation would be particularly simple for

i = j = k = θ and i = j = k = q, if one could assume that F c
i,ii depends on the

same variables which determine the spectra Fi,i, namely the rate of dissipation of

turbulence kinetic energy ǫe, the rates of dissipation of variance ǫθθ and ǫqq and

wavenumber k1. By means of dimensional analysis we then obtain the following

predictions for the inertial subrange:

F c
θ,θθ = α1

θ,θθǫ
−1/2
e ǫ

3/2
θθ k

−2
1 (2.61-a)

F c
q,qq = α1

q,qqǫ
−1/2
e ǫ3/2qq k

−2
1 . (2.61-b)

Higher order cross-spectra Fi,jk are important for several reasons, even

though so far they have received relatively little attention. The integral of the

corresponding cospectra is equal to the third moments which appear in the trans-

port equations for covariances: knowledge of their behavior with stability can

considerably simplify those equations. Moreover, the quadrature spectra Qi,ik

appear explicitly in the spectral budget equations (2.53), so that it may be use-

ful to analyze the behavior of the corresponding one-dimensional cross-spectra.



35

In Chapter 5, we will show that the prediction of (2.61) is indeed observed in

experimental temperature and humidity turbulence data.

In the equations above, α1
ij and α1

i,jk are constants (when i = j for α1
ij)

or functions of stability ζ at most (Wyngaard and Coté, 1972); in the following

tables we give some values of α1
uu, α

1
θθ and α1

qq found in the literature.

Table 2.1 – values of α1
uu found in the literature

Author α1
uu

Tennekes and Lumley (1972) 0.49

Lumley and Panofsky (1964) 0.46

Brutsaert (1982) 0.50 - 0.55

Fairall and Larsen (1986) 0.52 - 0.54

Kaimal et al. (1972) 0.50 - 0.53

2.7 Spectral similarity

We begin by making the spectral budgets for the variances, (2.56), di-

mensionless, in the same way that was done for the budgets of covariances in

section 2.3. Thus, we need to render cospectra, transfer terms and wavenumbers
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Table 2.2 – values of α1
θθ and α1

qq found in the literature

Author α1
θθ α1

qq

Paquin and Pond (1971) 0.83± 0.13 0.80± 0.17

Wyngaard and Coté (1971) 0.79± 0.10

Champagne et al. (1977) 0.82± 0.04

Smedman–Högström (1973) 0.52± 0.20

Leavitt (1975) 0.81± 0.31

Raupach (1978) 0.88± 0.26

Bradley et al. (1981) 0.8± 0.2

dimensionless:

kEa,b

a∗b∗
= ψa,b(η) (2.62-a)

κzkTa,b

u∗a∗b∗
= τa,b (2.62-b)

kUa,b

a∗b∗
= υa,b (2.62-c)

η = κzk (2.62-d)

κzu∗
νu
≡ Re∗ (2.62-e)

κzu∗
νθ
≡ Peθ∗ (2.62-f)

κzu∗
νq
≡ Peq∗ (2.62-g)

where of course τa,b should not be confused with the momentum flux defined in

(2.14).
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Multiplying (2.56) by κzk, and dividing by a suitable combination of

a∗b∗ . . ., one obtains:

−2φτψw,u + τe + φτυe + 2ζψw,θ +
2

Re∗
η2ψe = 0 (2.63-a)

−2φHψw,θ + τθ,θ + φτυθ,θ +
2

Peθ∗
η2ψθ,θ + 2

κzN(k)

u∗
ψθ,θ = 0 (2.63-b)

−2φEψw,q + τq,q + φτυq,q +
2

Peq∗
η2ψq,q = 0 . (2.63-c)

The solution of (2.63) with a convenient formulation for the radiative term will be

the subject of Chapter 6. We now turn to the particularly simple dimensionless

shapes for the inertial subrange. We will need to look at one-dimensional dimen-

sionless cospectra and spectra. The dimensionless wavenumber and frequency in

this case are:

κzk1 = η1 (2.64-a)

nz

u
= f (2.64-b)

2πκf = η1 (2.64-c)

where (2.64-c) comes from Taylor’s hypothesis (2.40); also, from (2.41) we obtain

k1F
c
a,b

a∗b∗
= ψ1

a,b(η1) = ψ1
a,b(2πκf) =

nSc
a,b

a∗b∗
, (2.65)

so that one can use ψ1
a,b interchangeably both for one-dimensional spatial and

temporal cospectra. From (2.57) and (2.59) with (2.25), we then find, for the

inertial subrange,

ψ1
u,u(ζ; f) = α1

u,uφ
2/3
ǫe (2πκf)−2/3 (2.66-a)

ψ1
w,w(ζ; f) =

4

3
α1
u,uφ

2/3
ǫe (2πκf)−2/3 (2.66-b)
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and

ψ1
θ,θ(ζ; f) = α1

θ,θφ
−1/3
ǫe φǫθθ

(2πκf)−2/3 (2.67-a)

ψ1
q,q(ζ; f) = α1

q,qφ
−1/3
ǫe φǫqq(2πκf)

−2/3 (2.67-b)

ψ1
θ,q(ζ; f) = α1

θ,qφ
−1/3
ǫe φǫθq

(2πκf)−2/3 (2.67-c)

whereas, for the cospectra with the vertical wind velocity w,

ψ1
w,u(ζ; f) = α1

w,uφτφ
1/3
ǫe (2πκf)−4/3 (2.68-a)

ψ1
w,θ(ζ; f) = α1

w,θφHφ
1/3
ǫe (2πκf)−4/3 (2.68-b)

ψ1
w,q(ζ; f) = α1

w,qφEφ
1/3
ǫe (2πκf)−4/3 . (2.68-c)

These equations can be compared with relationships obtained from experi-

ments. For instance, Wyngaard and Coté (1972) obtained the following empirical

fits for the inertial subrange of cospectra with the vertical velocity under stable

conditions:

ψ1
w,θ(ζ; f) = 0.40(1 + 6.4ζ)(2πκf)−4/3 (2.69-a)

ψ1
w,u(ζ; f) = 0.56(1 + 7.8ζ)(2πκf)−4/3 . (2.69-b)

To compare these with the predictions of (2.68), we adopt the consensus functions

given in Brutsaert (1982 pp. 68–71) for the dimensionless mean gradients in

stable conditions,

φτ = 1 + 5ζ (2.70-a)

φH = 1 + 5ζ (2.70-b)

φE = 1 + 5ζ . (2.70-c)
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There is, of course, some uncertainty regarding these functions: in a recent re-

view, Högström (1988) found the constants 6.0 and 7.8, instead of 5, for φτ

and φH ; on the other hand Högström’s figures for stable conditions show the

large scatter typical of stable conditions (Brutsaert, 1982 p. 71) which can easily

acommodate the values in (2.70). Also, Parlange and Katul (1992) obtained good

results with their proposed modified advection-adridity approach by using (2.70)

in stable conditions. As we begin to show now, even though it is not possible

to arrive at definitive values for the functions in (2.70) at present, these adopted

here render virtually all results in this work very consistent with one another,

which makes them at least as good as any other possible choice. Another cen-

tral theme of this thesis is, of course, the equality between (2.70-b) and (2.70-c)

assumed above. That this is also quite reasonable will be extensively shown in

the next three chapters, so for the time being we just anticipate the result.

Once the dimensionless gradients are available, (2.29-a), (2.29-e) and

(2.29-f) then provide the dissipation functions φǫe , φǫθθ
and φǫqq . Linearizing

φHφ
1/3
ǫe and φτφ

1/3
ǫe with a Taylor expansion to the first term around ζ = 0, one

obtains

φτφ
1/3
ǫe = φHφ

1/3
ǫe ≈ 1 +

19

3
ζ = 1 + 6.33ζ . (2.71)

which shows excellent agreement with (2.69). The “Wyngaard-Coté” “constants”

for stable conditions would then be

α1
wu = 0.56 (2.71-d)

α1
wθ = 0.40 (2.71-e)
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where it should be noted that α1
wu and α1

wθ are not constant under unstable

conditions (Kaimal et al., 1972; Wyngaard and Coté, 1972).

The dimensionless spectral budgets (2.63) actually predict that similarity

holds for the entire range of dimensionless wavenumbers η1, or frequencies f .

Empirical relationships covering the low-frequency end and the inertial subrange

have been available for a long time, and are still widely used. Probably the best

known are Kaimal’s (1973) curves,

ψ1
aa

φaa

=
nSa,a

σ2
a

=
0.164 (f/f0,aa)

1 + 0.164 (f/f0,aa)
5/3

(2.72-a)

ψ1
wa =

nSw,a

u∗a∗
=

0.88 (f/f0,wa)

1 + 1.5 (f/f0,wa)
2.1

(2.72-b)

where the exponent 2.1 is slightly different from 7/3 = 2.3333... predicted in

(2.68). Originally, the frequencies f0,aa and f0,wa were related empirically by

Kaimal to the Richardson’s number; Olesen et al. (1984) proposed to relate f0,aa

linearly with the dimensionless mean gradients φF , based on the argument that

f0,aa is proportional to the frequency of the peak of ψ1
a,a, whereas φF is related

to that and lower frequencies in the production terms of the spectral budgets.

Probably the best approach is that of Moraes and Epstein (1987), who obtained

f0,aa by equating (2.66) to (2.72-a)’s asymptotic behavior:

α1
uuφ

2/3
ǫe (2πκf)−2/3 = φuu

(
f

f0,uu

)−2/3

(2.73-a)

f0,uu =

(
α1
uu

φuu

)3/2
1

2πκ
φǫe (2.73-b)

and analogously, for the vertical velocity spectra,

f0,ww =

(
4α1

uu

3φww

)3/2
1

2πκ
φǫe . (2.73-c)
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This procedure can be extended readily for spectra of scalars and cospectra

of vertical velocity with u, θ and q, if it is agreed to use the theoretical prediction

7/3 instead of 2.1 in (2.72-b). We then obtain

f0,θθ =

(
α1
θ,θ

φθ,θ

)3/2
1

2πκ
φ−1/2
ǫe φ

3/2
H (2.74-a)

f0,qq =

(
α1
qq

φqq

)3/2
1

2πκ
φ−1/2
ǫe φ

3/2
E (2.74-b)

f0,wa = 1.4918 (α1
wa)

3/4 1

2πκ
φ
3/4
F φ1/4

ǫe . (2.74-c)

In this way, all the spectral properties of interest are expressed in terms

of the functions φF and Kaimal’s dimensionless curves only. To the author’s

knowledge, equations (2.74) are explicitly derived here for the first time.



Chapter 3

SIMILARITY OF TEMPERATURE AND HUMIDITY

This chapter deals with some definitions about the meaning of “similarity” be-

tween two scalars, and how to assess it. It gives an account of the research

efforts to establish whether the behavior of two scalars in the surface layer can

be assumed to be identical or not, as regards their turbulent transport prop-

erties. Several theoretical and experimental works are described and discussed,

with particular attention being devoted to the connection, first established by

Warhaft (1976), between the correlation coefficient rθq for temperature-humidity

and their respective eddy diffusivities KH and KE. With the help of the turbu-

lent budgets of θ′θ′, q′q′ and θ′q′ it is then shown that, if the divergence of third

moments is negligible or zero, such as in the case of homogeneous turbulence,

then rθq is ±1 and all the turbulent properties, duly non-dimensionalized, are

equal for temperature and humidity. These conclusions were reached by Hill

(1989a; 1989b), but they are derived here in a rather different way, which allows

to elucidate some points raised by earlier analyses.

42
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3.1 The meaning and importance of similarity

The word “similarity” is used here in a different context from that of

“Monin-Obukhov Similarity” theory. There, it means the ability to describe

turbulent properties with a set of suitable dimensionless parameters: the MOS

functions φ and the independent variable ζ. Here, it is used in its perhaps more

usual sense of two things being equal or having some properties in common. The

“things” are temperature and humidity or, more specifically, temperature and

humidity fluctuations, and the common properties are now introduced. We shall

say that two scalars are similar in some property if the corresponding MOS di-

mensionless functions are equal. Thus similarity of mean dimensionless gradients,

of mixed triple moments with w, variance and covariance will mean, respectively,

φH = φE (3.1-a)

φwθθ = φwqq (3.1-b)

φwwθ = φwwq (3.1-c)

φθθ = φqq = φθq . (3.1-d)

Notice however that (3.1-a) through (3.1-d) do not imply one another; in partic-

ular the second equality in (3.1-d) is to be considered an independent, stronger

statement about similarity. If each MOS function for temperature is equal to its

counterpart for humidity, then perfect similarity exists between the two scalars.

From a practical point of view, (3.1-a) is probably the most important.

First, notice that it implies that the “eddy diffusivities” of heat and water vapor
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are equal. Indeed, if a is any scalar, then from the definitions of the scalar

kinematic flux (2.14) and of dimensionless mean gradient (2.22) one has:

−κzu∗
φF

∂ a

∂z
≡ u∗a∗ ≡ w′a′ ≡ −KF

∂ a

∂z
(3.2)

whence φH = φE ⇔ KH = KE.

The equality of the dimensionless mean gradients for temperature and

humidity is an essential assumption in the energy budget Bowen-ratio (EBBR)

method, which derives the heat and water vapor fluxes from energy measurements

plus mean temperature and humidity measurements at two levels. The steady-

state energy budget for a uniform surface without advection of heat is (Brutsaert,

1982)

Rn = H + LE +G (3.3)

where Rn is the net radiation reaching the ground, L is the latent heat of evap-

oration and G is the ground heat flux. Now if a is a scalar, it follows from the

integration of (3.2) that

∆a = a1 − a2 =
a∗
κ

∫ ζ2

ζ1

φF

dζ

ζ
. (3.4)

Let the flux Bowen Ratio be defined by (Lang et al., 1983a):

Bof ≡
H

LE
. (3.5)

Then, using (3.4) above,

Bof =
ρcpw

′θ′

ρLw′q′
=
cp
L

θ∗
q∗

=
cp
L

∆θ

∆q

∫ ζ2
ζ1
φE dζ/ζ∫ ζ2

ζ1
φH dζ/ζ

(3.6)
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whence

φH = φE ⇒ Bof = Bog ≡
cp
L

∆θ

∆q
(3.7)

where the gradient Bowen Ratio Bog (Lang et al., 1983a), defined above, is what

is actually measured in the EBBR method . With the measurement of Bog, Rn

and G, it is then possible to obtain the fluxes H and LE.

Now if (3.1-a) does not hold, the EBBR method cannot be applied any

longer; in fact, all methods which are based on assuming a value for φE are

then questionable, since most flux-gradient relationships, such as (2.70) have

been derived from temperature profiles associated with heat flux measurements

(Businger et al., 1971; Dyer, 1974; Högstrom, 1988).

As it turns out, the question of equality of φH and φE is intimately re-

lated to the correlation coefficient between temperature and humidity fluctua-

tions. This is fortunate in the sense that it is much easier to calculate rθq in

stable conditions than to measure humidity gradients ∆q, given the smallness of

humidity differences in the air during nighttime and the fact that mean humidity

usually requires two temperature measurements (dry- and wet-bulb), whereas

air temperature requires only one (dry-bulb), making the former more prone to

error.

3.2 The controversy on the similarity of θ and q

The first connection between the correlation coefficient rθq and the equal-

ity (or not) of φH and φE seems to have been made by Swinbank and Dyer
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(1963). They observed similar profiles of θ and q together with a high correla-

tion (rθq = 0.9). Warhaft (1976) was the first to provide a theoretical framework

for this connection. He considered the budgets of heat and humidity fluxes,

(2.15-c) and (2.15-d),

0 = −w′w′
∂ θ

∂z
− ∂ w′w′θ′

∂z
+

g

θv
θ′θ′v +

p′

ρ

∂ θ′

∂z
− 2ǫwθ (3.8-a)

0 = −w′w′
∂ q

∂z
− ∂ w′w′q′

∂z
+

g

θv
q′θ′v +

p′

ρ

∂ q′

∂z
− 2ǫwq (3.8-b)

which were closed as follows. The dissipation terms were shown to be unimpor-

tant by Wyngaard et al. (1971): the high-wavenumber components of w′ and θ′

(or q′) should become less and less correlated due to local isotropy:

ǫwθ =
∂ w′

∂xk

∂ θ′

∂xk
=
νw + νθ

2

∫ ∞

0

k2Ew,θ(k) dk ≈ 0 , (3.9)

since, due to the presence of k2, it is exactly the high-wavenumber, highly

isotropic (and hence very nearly null) part of the cospectrum which contributes

most for the dissipation (the same holding for ǫwq). The divergence terms

∂ w′w′θ′ /∂z and ∂ w′w′q′ /∂z were assumed to be neglible too; this will be shown

to be a very reasonable approximation in Chapter 4. Finally, the pressure-scalar

covariances were closed following Launder (1975):

p′

ρ

∂ θ′

∂z
= −

[
3.2

ǫe

e′
w′θ′ +

1

2

g

θv
θ′θ′v

]
(3.10-a)

p′

ρ

∂ q′

∂z
= −

[
3.2

ǫe

e′
w′q′ +

1

2

g

θv
q′θ′v

]
(3.10-b)
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where the same constants were used in (3.10-a) and (3.10-b). This was justified

by noticing that a suitable linear combination of them has to yield the budget of

virtual heat flux w′θ′v . Indeed, given the relation (2.3) between θ′v, θ
′ and q′,

θ′v = (1 + 0.61q)θ′ + 0.61θq′ , (3.11)

one obtains

(1 + 0.61q)
p′

ρ

∂ θ′

∂z
+ 0.61θ

p′

ρ

∂ q′

∂z
≡ p′

ρ

∂ θ′v
∂z

, (3.12)

the same holding for all the other terms in (3.8). Interestingly, the same kind of

argument was used by Hill (1989a) to show that two scalars in the surface layer

are perfectly similar.

Pressure-scalar closures were extensively analyzed by Moeng and Wyn-

gaard (1986) with the help of a Large-Eddy Simulation model for the whole

atmospheric boundary layer (ABL), which had essentially the same form as that

used by Warhaft; their closure was

− 1

ρ0
c′
∂ p′

∂z
= −

[
1

2

g

θ
θ′c′ − w′c′

T

]
(3.13-a)

τ̃ = T w∗

zi
(3.13-b)

w∗ ≡
[
gzi

θ
w′θ′|0

]1/3
(3.13-c)

where the dimensionless time scale τ̃ is between 0 and 2.5; w∗ is a convective

velocity scale, zi is the height of the ABL and T represents a characteristic time

for the whole ABL, whereas one can clearly identify, from (2.23) and (2.25),

ǫe

e′
=
u3∗
κz
φǫe

1

φeu
2
∗

=
u∗
κz

φǫe

φe

(3.14)
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in Launder’s closure (3.10) as a characteristic time for the surface layer. Dakos

and Gibson (1987) proposed a considerably more complicated closure based on a

solution for the scalar transport equation in Fourier space, but their model seems

to remain untested in atmospheric flows.

In any case, both Dakos and Gibson’s and Launder’s closures turn out to

be quite reasonable in the light of MOS theory, since we know from (2.24) that

the most general form of the pressure-scalar closure in the surface layer should

read

p′

ρ

∂ θ′

∂z
=
u2∗θ∗
κz

φp∂θ(ζ) . (3.15)

It is a simple exercise to show that Launder’s closure (3.10) does indeed have the

form predicted above.

Now “opening up” the terms θ′θ′v and q′θ′v in the flux budget equations

(3.8), we obtain the variances θ′θ′ and q′q′ and the covariance θ′q′ explicitly, and

replacing the scalar fluxes w′θ′ and w′q′ by the corresponding product of eddy

diffusivity and mean gradient in (3.2), we finally obtain Warhaft’s expression for

the ratio KH/KE,

KH

KE

=
1− 1

2
g

w′w′

[
θ′θ′

θ
+ 0.61θ′q′

]
(∂ θ
∂z
)−1

1− 1
2

g

w′w′

[
θ′q′

θ
+ 0.61q′q′

]
(∂ q
∂z
)−1

(3.16)

from which Warhaft was able to show that KH = KE only if rθq = ±1. An

expression somewhat simpler than (3.16) can be obtained by neglecting the effect

of humidity in the density stratification; the terms involving the 0.61 factor, which
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accounts for virtual temperature, then drop. Substituting the mean gradients

with (3.2) and expanding the resulting expression, Warhaft obtained

KH

KE

= 1 +
1

2

g

w′w′

θ′θ′

θ

(
∂ θ

∂z

)−1(
rθq
rwθ

rwq

− 1

)
(3.17)

from which he anticipated that when the two fluxes H and E were of opposite

sign, it was possible that |rθq| < 1, with the implication that

Warhaft, 1976 (theoretical): −1 < rθq < 0 ⇒ KH

KE

< 1 . (3.18)

Verma et al. (1978) measured eddy diffusivities over an alfafa field. To

obtain estimates of H and LE independently of measured θ and q gradients,

they measured E with a lysimeter and inferred H by means of the energy budget

equation (3.3). Even though they obtained different eddy diffusivities in stable

conditions for heat and water vapor, their result contradicts Warhaft’s theory:

Verma et al., 1978 (experimental):
KH

KE

∼ 2 > 1 (3.19)

where the factor 2 above is only an approximate average obtained from Verma

et al.’s tables and pictures.

Verma et al.’s work generated some discussion; Hicks and Everett (1979)

pointed out that different values of the zero-plane displacement height for heat

and water vapor, associated with different sources and sinks within the canopy,

can explain at least partially Verma et al.’s results. Commenting on the same

paper, Brost (1979) mentioned an intriguing fact: by incorporating the budgets

of temperature variance, humidity variance and temperature-humidity covariance

into Warhaft’s analysis, it is also possible to refute his results, obtaining KH =
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KE regardless of rθq. Since Brost’s comments do not include all the calculations

involved, it is well worth undertaking them here. Thus, consider the variance

and covariance budgets (2.15) in the case of homogeneous turbulence,

w′θ′
∂ θ

∂z
= −ǫθθ (3.20-a)

w′q′
∂ q

∂z
= −ǫqq (3.20-b)

w′θ′
∂ q

∂z
+ w′q′

∂ θ

∂z
= −2ǫθq . (3.20-c)

He then parameterized the dissipation terms as

ǫθθ =
σwσ

2
θ

l
(3.21-a)

ǫqq =
σwσ

2
q

l
(3.21-b)

ǫθq = rθq
σwσθσq

l
. (3.21-c)

Notice how the same length scale l is being assumed for all 3 cases, which may

be debatable when one is discussing the similarity of θ and q. Substituting (3.21)

in (3.20) above, and expressing covariances as products of correlation coefficients

and standard deviations, we then obtain:

θ′θ′ ≡ σ2
θ = −lrwθσθ

∂ θ

∂z
(3.22-a)

q′q′ ≡ σ2
q = −lrwqσq

∂ q

∂z
(3.22-b)

θ′q′ ≡ rθqσθσq = −
l

2

(
rwθσθ

∂ q

∂z
+ rwqσq

∂ θ

∂z

)
(3.22-c)

and now, substituting (3.22) above into Warhaft’s ratio of KH to KE (3.16):

KH

KE

=
1 + 1

2
gl
σ2
w

[
rwθσθ

θ
+ 0.61

2

(
rwθσθ(

∂ q
∂z
)(∂ θ

∂z
)−1 + rwqσq

)]

1 + 1
2

gl
σ2
w

[
1
2θ

(
rwθσθ + rwqσq(

∂ θ
∂z
)(∂ q

∂z
)−1
)
+ 0.61rwqσq

] . (3.23)
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where the correlation rθq has been canceled out. This can misleadingly suggest

that its value is irrelevant. In order to eliminate the mean gradients, we can use

the definition of eddy diffusivities one more time,

rwθσwσθ ≡ KH

∂ θ

∂z
(3.24-a)

rwqσwσq ≡ KE

∂ q

∂z
(3.24-b)

whence

KH

KE

=
1 + 1

2
gl
σ2
w

[
rwθσθ

θ
+ 0.61

2

(
rwθσθ

rwqσwσq

KE

KH

rwθσwσθ
+ rwqσq

)]

1 + 1
2

gl
σ2
w

[
1
2θ

(
rwθσθ + rwqσq

rwθσwσθ

KH

KE

rwqσwσq

)
+ 0.61rwqσq

]

KH

KE

=
1 + 1

2
gl
σ2
w

[
rwθσθ

θ
+ 0.61

2

(
KH

KE
+ 1
)
rwqσq

]

1 + 1
2

gl
σ2
w

[
1
2

(
KE

KH
+ 1
)

rwθσθ

θ
+ 0.61rwqσq

] (3.25)

and with simple algebra one can show that (3.25) above implies

Brost, 1979 (theoretical): ∀ rθq ,
KH

KE

= 1 . (3.26)

Thus, whereas Warhaft’s theory leaves the door open for the equality / ine-

quality of KH and KE depending on the correlation coefficient rθq, Brost’s mod-

ification, which simply adds some budget relations to Warhaft’s result, leads to

an almost contradictory conclusion, namely that KH = KE regardless of rθq . . .

But the story continues.

Lang et al. (1983a) calculated eddy diffusivities under stable conditions,

this time over a rice field under flood irrigation in Australia; this was a careful

experiment where the minimum fetch was approximately 300 m, and where the

turbulent fluxes were obtained with state-of-the-art eddy correlation techniques.

The main results were as follows. The correlation coefficient rθq was −0.70±0.02,
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from which Warhafts ratio KH/KE predicted in (3.16) would have been between

−0.9 and −1.0; the actual measured values were

Lang et al., 1979 (experimental): ∀ rθq = −0.70; 0.6 <
KH

KE

< 1 , (3.27)

which is qualitatively in agreement with Warhaft’s (3.18). There certainly is

less ground to debate Lang et al.’s results than those of Verma et al.; two facts,

however, deserve careful mention.

First, in the next two chapters we will see that the correlation coefficient of

raw turbulent temperature and humidity data for FIFE-89 is indeed larger than

−1, as in Lang et al.. Then, in Chapter 5 it will be shown that the coherence

function for θ, q is very close to 1 over frequencies down to 0.1 Hz, falling off to

zero from 0.1 to 10 Hz. We believe that there is now convincing evidence that this

fall-off is purely due to instrumental separation, as will be discussed carefully in

Chapter 5. Thus, it is perfectly possible to attribute less-than-perfect correlations

to instrumental separation, which leaves some doubt about the actual value of

rθq in Lang et al.’s experiment had this effect been taken into account.

Secondly, Lang et al. did examine properly non-dimensionalized cospec-

tra of w, θ and w, q. Contrary to what one might expect in a case where the

two scalars were dissimilar, the two cospectra collapsed perfectly on top of one

another.

Hill (1989a) showed that, if MOS theory is valid for two scalars and a

linear combination thereof, then these scalars are similar in the sense of (3.1).

Moreover, all the spectral dimensionless functions will also be equal. As an
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example, we use Hill’s line of argumentation to derive the equality of φH and

φE in a way slightly different from and faster than his. Although most of Hill’s

developments are done with the index of refraction whose fluctuating part is a

linear combination of θ′ and q′, the same of course can be done with the virtual

temperature, for which we know that the fluctuating part is given by equation

(3.11) which, upon multiplication by w′ and averaging yields relation (2.18) for

the virtual temperature scale,

θv∗ = (1 + 0.61q)θ∗ + 0.61θq∗ . (3.28)

Now assume that θ, q and θv follow MOS in the surface layer so that

θ∗φH = κz
∂ θ

∂z
(3.29-a)

q∗φE = κz
∂ q

∂z
(3.29-b)

θv∗φHv
= κz

∂ θv
∂z

. (3.29-c)

With the use of the definition of virtual temperature, equation (2.1), (3.29-c)

becomes

θv∗φHv
= κz

[
(1 + 0.61q)

∂ θ

∂z
+ 0.61θ

∂ q

∂z

]
(3.30)

whereas the corresponding linear combination of (3.29-a) and (3.29-b) above gives

(1 + 0.61q)θ∗φH + 0.61θq∗φE = κz

[
(1 + 0.61q)

∂ θ

∂z
+ 0.61θ

∂ q

∂z

]
. (3.31)

Thus, equating the two expressions, one finds

θv∗φHv
= (1 + 0.61q)θ∗φH + 0.61θq∗φE (3.32)
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and now, in order for (3.28) to be always true, we must have

φHv
= φH = φE . (3.33)

Notice that the essence of this derivation lies in the assumption

a′, b′ obey MOS ⇒ c′ = kAa
′ + kBb

′ obeys MOS . (3.34)

At any rate, the assumption that θv itself follows MOS is highly intuitive and

very hard to refute. By repeatedly invoking (3.34), Hill was able to show that

all dimensionless functions φ are equal for temperature and humidity. Not only

that, using the triangle and Hölder’s inequalities (Abramowitz and Stegun, 1972)

he showed that

r2θq = 1 ⇒ θ′

θ∗
=
q′

q∗
, (3.35)

a very strong result indeed. In short,

Hill, 1988 (theoretical): θ′, q′ and θ′v obey MOS ⇒




r2θq = 1
and
φH = φE

. (3.36)

Bertela (1989) analyzed the conditions under which the EBBR method

may fail. He cites several occasions in an experiment where the solution of the

energy budget equation (3.3) with the Bowen ratio calculated by means of (3.7)

leads to values of H and LE having the opposite sign to that predicted by the

observed mean gradients. His examples include both stable and unstable cases.

His main conclusion is that such occurrences can be explained by advection of

sensible and latent heat, a hypothesis considered in Brost’s (1979) comments.

It is interesting that Lang et al. (1983b) in a second paper concluded that

local advection of sensible or latent heat was not important at their main point
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of measurement (in other words, they considered their fetch adequate). This

conclusion, however, was reached indirectly from a set of assumptions which

included evaporation tending to the Priestley-Taylor (1972) value asymptotically

over distance. This is questionable, insofar as the Priestley-Taylor model assumes

H ≥ 0, a condition not met in Lang et al.’s (1983b) case. Notice that LeClerc and

Thurtel (1990), using a random-walk Markovian model for the vertical velocity

field found out that the typical fetch for an internal boundary layer to adjust

to a step change in surface conditions was much larger for stable than unstable

conditions, so local advection may be a more serious problem in the former case.

They also observed that Bowen ratio measurements are particularly sensitive to

surface inhomogeneities because of the different footprints “seen” by the lower

and upper sensors.

We now derive essentially the same results as Hill’s (3.36), but using a

totally different set of assumptions. We shall say nothing about linear combi-

nations of scalars and, indeed, MOS is assumed only insofar as stationarity and

surface uniformity are; there will be no explicit references to φHv
. We do however

require the transport terms in the θ′θ′ , q′q′ and θ′q′ budgets to be negligible,

a condition automatically fulfilled under homogeneous turbulence. Then, recall

from (2.29) that the dimensionless budgets are simply

φH = φǫθθ
(3.37-a)

φE = φǫqq (3.37-b)

φH + φE = 2φǫθq
. (3.37-c)



56

Now consider

ǫ2θq
ǫθθǫqq

=

(νθ+νq
2

)2( ∂ θ′

∂xk

∂ q′

∂xk

)2

νθνq

(
∂ θ′

∂xk

∂ θ′

∂xk

)(
∂ q′

∂xk

∂ q′

∂xk

) (3.38-a)

φ2
ǫθq

φǫθθ
φǫqq

=
ν2θ + 2νθνq + ν2q

4νθνq
r2∇θ∇q

= 1.008r2∇θ∇q ≈ r2∇θ∇q (3.38-b)

where the following values for the molecular diffusivities of heat and water vapor

in air at 20 ◦C were substituted (Brutsaert, 1982):

νθ = 2.122× 10−5 m2 s−1 (3.39-a)

νq = 2.536× 10−5 m2 s−1 , (3.39-b)

and the usual non-dimensionalization was done on the left hand side with the

turbulence scales u∗, θ∗ and q∗;

r2∇θ∇q ≡

(
∇θ′ · ∇q′

)2
(
∇θ′ · ∇θ′

)(
∇q′ · ∇q′

) (3.40)

can be interpreted as the correlation coefficient between the fluctuating tempera-

ture and humidity gradients. From the dimensionless budgets (3.37) and (3.38-b)

the following simple algebraic system obtains:

z2 = r2xy (3.41-a)

x+ y = 2z (3.41-b)

for z = φǫθq
, x = φH = φǫθθ

, y = φE = φǫqq and r = r∇θ∇q, whose solution for x/z

is

x

z
=
r2 ±

√
r4 − r2
r2

. (3.42)
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Since r2 ≤ 1, (3.42) only has real solutions for r2 = 1, whence x = y = z;

this shows, at the same time, that the dimensionless gradients φH and φE are

equal, and that the fluctuating temperature and humidity gradients are perfectly

correlated, or anti-correlated. Moreover, using Hill’s (3.35) for the gradients

instead of the scalar fluctuations, it is obvious that

r2∇θ∇q = 1 ⇒ ∇θ′ = C∇q′ , (3.43)

a result which can also be obtained in a simpler way by analogy with the equa-

tion for the linear regression of two variables through the origin. Indeed, if the

correlation coefficient between a′ and b′ is ±1 and their averages are null,

r2ab = 1 ⇒ a′b′ 2

a′a′ b′b′
= 1 (3.44-a)

or
[
a′b′

a′a′

]2
=

b′b′

a′a′
; (3.44-b)

set

α ≡ a′b′

a′a′
(3.44-c)

to obtain

b′b′ =α2 a′a′ . (3.44-d)

Now, using (3.44-c) and (3.44-d):

(b′ − αa′)2 = b′b′ − 2αa′b′ + α2 a′a′

= 2α2 a′a′ − 2

[
a′b′

a′a′

]2
a′a′

= (2α2 − 2α2) a′a′ = 0 (3.45)
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whence

r2ab = 1 ⇒ b′ = αa′ . (3.46)

It is now very easy to show that the fluctations of temperature and humidity are

themselves proportional; from (3.46) above with a′ = ∇θ′, b′ = ∇q′,

∇q′ = C∇θ′

∂ q′

∂xk
= C

∂ θ′

∂xk
∂

∂xk
(q′ − Cθ′) = 0

q′ − Cθ′ = D (3.47)

where D is an integration constant. Taking averages,

q′ = Cθ′ = 0 = D (3.48)

whence:

q′ = Cθ′ (3.49-a)

r2θq = 1 . (3.49-b)

Multiplying (3.49-a) by w′ and averaging one can easily find the constant C,

which of course is the same as that obtained by Hill:

C =
q∗
θ∗
. (3.50)

This proportionality between θ′ and q′ can now be used to show that all remaining

dimensionless statistics and dimensionless spectral functions must be equal; for
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example, for the dimensionless one-dimensional spectrum,

ψ1
θθ =

2nθ̂∗θ̂

θ2∗
δ(0) (3.51-a)

ψ1
qq =

2nq̂∗q̂

q2∗
δ(0) . (3.51-b)

From

θ̂ =

∫ +∞

−∞

θ′(t)e−2π i nt dt

=
θ∗
q∗

∫ +∞

−∞

q′(t)e−2π i nt dt

=
θ∗
q∗
q̂ , (3.52)

it follows that

ψ1
θ,θ = ψ1

q,q , (3.53)

etc.

This derivation also serves to solve the apparent contradiction between

Warhaft’s (1976) and Brost’s (1979) results. For even though Brost’s expression

(3.25) does not explicitly contain rθq, it is noticeable that the heart of his deriva-

tion contains the same variance and covariance budgets for θ′θ′ , q′q′ and θ′q′

used above. But we have just seen that the set of equations (3.37) is sufficient

to prove φH = φE and r2θq = 1 so that, even though Brost doesn’t seem to have

realized it, his derivation actually implies perfect correlation or anti-correlation,

which reconciles his results with Warhaft’s.
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3.3 Further comments on rθq

The preceding section firmly establishes, on a theoretical ground, that

r2θq = 1 is a necessary and sufficient condition for φH = φE if the flow is stationary

and homogeneous, and the surface is uniform (see equations (3.41) and (3.42)).

Actually, it is quite possibly a sufficient condition even when the transport terms

involving triple moments are non-zero, because the corresponding dimensionless

functions φwθθ and φwqq would still be equal: see the dimensionless budgets (2.28)-

e and (2.28)-f.

It should also be pointed out that r2θq = 1 is an approximation that breaks

down, as it should, when one considers the effect of the slight difference (20%) in

molecular diffusivities. In fact, if we now assume that the ratio of dimensionless

dissipation rates is 1 on the left-hand side of (3.38-b), it will follow that r2∇θ∇q =

1.008−1 = 0.9921. Clearly, less-than-perfect correlation between θ′ and q′ in

the high-wavenumber range of the cospectrum is necessary for the dimensionless

dissipations φǫθθ
and φǫqq to be equal in spite of the aforementioned differences

in molecular diffusivities: see equations (2.10) and (2.25).

One can now raise the question of whether advection and correlation are

connected. As a matter of fact, there is some experimental evidence that the

correlation itself can be used as an index of advective effects, judging from the

striking example provided in figure 1 of Wesely (1988), and shown in figure (3.1)

below. It depicts rθq measured at various distances downwind over water from
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Figure 3.1 – The correlation coefficient rθq as a function of distance over water

over a warm cooling pond, measured by Wesely and Hicks (1978). Adapted from

Wesely (1988).

the edge of a cooling pond whose warm water increases the instability of the

advected air. Notice how rθq tends asymptotically to +1.

Secondly, the widespread and sucessful use of the EBBR method under

unstable conditions, plus a few experiments in which φH and φE were indepen-

dently measured (Swinbank and Dyer, 1963; Dyer, 1967) lends credence to

ζ < 0 ⇒ φH = φE . (3.54)

This in turn, of course, means that one would expect to measure high correlations

in unstable conditions. As mentioned before, Swinbank and Dyer obtained rθq =

0.9. However, in a survey of reported observed values of rθq, it shows a large
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variation and there is no more reason to assume r2θq = 1 in unstable conditions

than in stable ones. In fact, it seems that the correlation is actually better in

stable conditions. These values are listed in table (3.1 ); when several values

were measured, the range of observed rθq is indicated by brackets.

It is clear that on the basis of rθq alone, there should actually be more

concern about the equality of φH and φE under unstable conditions than stable

ones. Notice also that some of the measurements were probably distorted by

the effect of sensor separation, which is not always duly taken into account;

notable exceptions are found in Wesely and Hicks’s (1978) and Priestley and

Hill’s (1985) papers. Adjusting for sensor separation increases the value of r2θq.

This is an important point, which will be taken up again in the next chapters.

3.4 Closure

This chapter defined the meaning of similarity between two scalars. It

also reported what have been the main theoretical and experimental efforts to

establish or disprove this similarity. The experimental results of Verma et al.

(1978) and Lang et al. (1983) are contradictory between themselves and with

theory. It is not the intent of the present work to explain those discrepancies.

It should be enough to notice that there are many possible explanations which

do not contradict the assumption of similarity of θ and q: different zero-plane

displacement heights and local advection of heat and/or water vapor are two

main candidates. A third possibility which might be important in nocturnal
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Table 3.1 – values of rθq found in the literature

Author Stability rθq Comments

Swinbank and Dyer (1963) unstable 0.9 wet-bulb psychrometer was
used for q′

Phelps and Pond (1971) unstable [0.3, 0.87] measured over the sea

Wesely and Hicks (1978) unstable 1.0 asymptotic value in de-
veloped internal boundary
layer

McBean and Elliott (1981) unstable [0.6, 0.9] 0.5 m transversal separation
between θ and q sensors

Koshiek (1982) unstable 0.75 inferred from structure
parameters

Lang et al.(1983a) stable −0.7 measured over an irrigated
rice field

Ohtaki (1985) unstable −1.0 actually rcq, where c = CO2

concentration

Priestley and Hill (1985) unstable [0.76, 0.89] inertial subrange spectral
correlation coefficient

Priestley and Hill (1985) stable [−1.0,−0.94] same as above

De Bruin et al.(1993) unstable [0.0, 1.0] low rθq attributed to small
E and large-scale ABL
processes

This work (1994) stable [−0.6,−1.0] most frequent value is -1 at
n ≤ 0.1Hz

conditions is radiative effects, since they are introduced asymmetrically in the

θ′θ′ , q′q′ and θ′q′ budgets. Since the data used in the next two chapters were
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measured at night, it is mportant to assess quantitiatively the effects of radiation.

This is done in Chapter 6.

Theoretical analysis, on the other hand, consistently indicates that tem-

perature and humidity are indeed very similar, to the point of their instantaneous

fluctuations being proportional. This result was first solidly established by Hill

(1989a), even though it loomed in the previous analyses of Warhaft (1976) and

Brost (1979). We have been able to substantiate it with a different and somewhat

more parsimonious derivation which does not require a priori the φ-functions

for linear combinations of scalars to follow MOS theory. Instead, the similar-

ity between θ and q is established directly from the turbulent budgets for their

variances and covariances. In so doing, we reconciled the remaining apparent

contradictions between the former analyses by Warhaft and Brost.

A review of values of rθq found in the literature both in stable and in

unstable conditions suggests that less than perfect correlation may actually be

more common in the latter case. Therefore, if one considers the correlation

coefficient alone, there should be at least as much reason to doubt the equality

of dimensionless gradients of temperature and humidity in unstable conditions.

It is possible that in many cases instrument separation was the cause of lower

correlations: a standard way for correlation calculation, which of course can be

highly dependent on instrumental setup, does not exist.



Chapter 4

ANALYSIS OF SIMILARITY OF θ AND q

WITH DATA FROM FIFE-89

The objective of this chapter is to assess the validity of the assumptions of sim-

ilarity of temperature and humidity with field data. The data consist mainly

of turbulence measurements of vertical and horizontal velocity, temperature and

humidity, but measurements from an energy budget Bowen ratio station and a

meteorological station are also used. The validity of the flux-gradient relation-

ship for temperature is verified; humidity gradients however are too noisy to give

reliable conclusions. The correlation coefficient between θ′ and q′ is calculated

from the raw measurements and from low-pass filtered data, and if sensor sepa-

ration is duly taken into account, it is close to the theoretical value of −1. The

dimensionless second- and third-order moments are calculated from the raw data

for 26-minute and 52-minute runs, with the longer averaging periods yielding

more stable statistics. The temperature and humidity data are shown to be sta-

tistically indistinguishable (except for one of the nights studied); this, together

with the high correlations observed, lends considerable weight to the assump-

tion of perfect similarity between the two. We also show that the third order

dimensionless moments are very small and constant with stability, which implies

65
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that the corresponding transport terms are negligible in the covariance budget

equations. Perhaps the poorest performance of Monin-Obukhov similarity the-

ory is the prediction that the correlation coefficients rwθ and rwq are functions

of stability ζ: the observed scatter is too big so that only their average behavior

can be inferred.

4.1 Site and instrument characteristics

The data were measured in a natural prairie in Manhattan, Kansas, dur-

ing the First International Satellite Land Surface Climatology Project (ISLSCP)

International Field Experiment (FIFE-89), in July and August of 1989. For a

general account of FIFE, see the special 1992 issue of the Journal of Geophys-

ical Research dedicated to it (Volume 97 D No 17), and in particular Sellers et

al (1992). The local topography consists of small hills terminating, sometimes

abruptly, into gullies, and crisscrossed by small creeks. Vegetation was mainly

grass, some of it previously burned, with sparse bushes and trees. The so-called

supersite 904 was located on top of a hill. To the south (over the predominant

wind direction), west and southwest there was a long mild slope generally clear of

obstacles for more than 1,000 m; to the north, however, the hill ended abruptly

after about 150 m into gullies. The present description is an account of a personal

visit to the FIFE-89 site three years later, in june of 1992. Of course, there was

no trace of the field equipment anymore, but the location of site 904 was easily

found. A useful source of additional information can be found in Fritschen et al.
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(1992). Three measuring stations were co-located: one energy budget Bowen ra-

tio (EBBR) station run by Dr. Leo Fritschen from the University of Washington,

one Portable Automated Mesonet station (PAM) and one eddy correlation (EC)

station run by Dr. Marvin Wesely from Argonne National Laboratories. The

energy budget station had sensors located at 1.5 and 2.7 m, whereas the eddy

correlation measurements were made at a height of 2.5 m above the ground. Ta-

ble 4.1 shows the measurements at each station which are relevant for this study.

Vapor pressure measurements e are equivalent to specific humidity mea-

surements q via

q =
0.622e

p
(4.1)

where p is atmospheric pressure. The turbulence measurements, in particu-

lar, were made as follows. Horizontal velocity u was measured with a fast-

cup anemometer; vertical velocity fluctuations w′ were measured with a sonic

anemometer; temperature with an unspecified temperature sensor and humid-

ity with a Lyman-α hygrometer (Wesely, 1991 — personal communication). All

quantities were sampled at 20 Hz and stored on computer tape. The original mea-

surement runs were 25.8133 min. long, corresponding to 30,976 measurements per

run. Here, they are called “short runs”. We have also analyzed consecutive pairs

of short runs, calling them “long runs”. Six nights were used: August 03rd,

06th, 07th, 08th, 10th and 11th. By “the night of the 03rd” is meant the period

beginning around 6:00 pm (local CDST time) on August 03rd, and going until

around 6:00 am (local time) the next morning, August 04th. The precise times

for each night depend on data availability. These nights were chosen from the
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Table 4.1 – Atmospheric measurements at FIFE supersite 904 used in this study.

Station Measurement Symbol

PAM avg. air temperature at 2.0 m θ

PAM avg specific humidity at 2.0 m q

PAM avg atmospheric pressure p

PAM avg wind direction Z

EBBR avg air temperature at 1.5 m θ1

EBBR avg air temperature at 2.7 m θ2

EBBR avg vapor pressure at 1.5 m e1

EBBR avg vapor pressure at 2.7 m e2

EC avg horizontal wind speed u

EC fluctuating vertical velocity w′

EC fluctuating horizontal velocity u′

EC fluctuating temperature θ′

EC fluctuating specific humidity q′

available data to provide a reasonably large stability range. Moreover, almost all

runs analyzed had sensible and latent heat fluxes such that H ≤ −10.0 Wm−2

and LE ≥ 3.0 Wm−2 (the exceptions being very close to these figures). Table

4.2 shows the times corresponding to the center of the short runs analyzed, and

table 4.3 does the same for the long runs.
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Table 4.2 – List of short runs.

03 Aug 06 Aug 07 Aug 08 Aug 10 Aug 11 Aug

19:45 19:45 19:45
20:15 20:15 20:15

20:45 20:45 20:45 20:45 20:45
21:15 21:15 21:45 21:15
21:45 21:45 21:45 21:45
22:15 22:15 22:15 22:15
22:45 22:45 22:45 22:45 22:45
23:15 23:15 23:15 23:15
23:45 23:45 23:45 23:45
00:15 00:15 00:15 00:15
00:45 00:45 00:45 00:45
01:15 01:15 01:15 01:15
01:45 01:45 01:45 01:45
02:15 02:15 02:15 02:15
02:45 02:45 02:45 02:45
03:15 03:15 03:15 03:15
03:45 03:45 03:45
04:15 04:15 04:15 04:15
04:45 04:45
05:15 05:15
05:45 05:45
06:15 06:15
06:45 06:45
07:15 07:15

4.2 Data Processing

The data for this study consisted of the 30-min. means for the PAM and

EBBR stations listed on table 4.1 , plus the turbulence data collected at the EC

station. The raw turbulence data were stored in one binary data file for each

short run. The data file contains 122 records, and each record is 2,560 bytes long,

holding (up to) 1,280 16-bit integers. The first five variables of the first record (a
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Table 4.3 – List of long runs.

03 Aug 06 Aug 07 Aug 08 Aug 10 Aug 11 Aug

20:30 20:30 20:30
21:30 21:30 21:30
22:30 22:30 22:00 22:30
23:30 23:30 23:00 23:00 23:30
00:30 00:30 00:00 00:30
01:30 01:30 01:00 01:30
02:30 02:30 02:00 02:30
03:30 03:30 03:00 03:30
04:30 04:30
05:30 05:30
06:30 06:30

header record) are the day, month, year, hour, and minute that the acquisition

started for the run (start times are local); the remaining 1,275 values of the record

being non-significant. Each of he next 121 records contains 256 simultaneous

measurements of vertical wind velocity from the sonic anemometer, horizontal

wind speed, water vapor pressure, temperature, and vertical wind velocity from a

propeller anemometer (used to obtain the small average vertical velocity), taken

at a sampling rate of 20 Hz. The total measuring time for a short run is then

121 × 256/20 = 30,976/20 = 1,548 s = 25.8133 min.. The integer data values

range from 0 to 4095, corresponding to a 12-bit analog-to-digital conversion. For

any turbulence quantity a, the recorded 16-bit integer value Ia is converted back

to SI units by means of

ai = Fa(Ia − 2,048) +Ga (4.2)
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Table 4.4 – Turbulence instruments time constants and conversion factors.

instrument Ta/ s Fa Ga

sonic anemometer 0.1 m/u 500/2,048 0.00 m s−1

fast-cup anemometer 0.5 m/u 2,150/2,048 0.26 m s−1

Lyman-alpha hygrometer 0.001 0.674e/2,048 0.00 Pa

temperature sensor 0.007 10/2,048 0.00 K

propellor anemometer 2.0 m/u 502/2,048 0.00 m s−1

where i runs from 0 to 30,975 in each run. The factors Fa and Ga for each variable

are listed in table 4.4 , together with the time constants Ta of each instrument.

Notice that for the sonic anemometer, temperature and humidity data,

ai does not represent an actual vertical velocity, temperature or vapor pressure,

but the turbulent time series superimposed on an unknown mean. In the case

of the fast cup and propeller anemometers their readings are absolute velocity

values after the transformation (4.2). Notice also that the transformation for the

Lyman-alpha data involves the mean vapor pressure (from the PAM station),

whereas the time constants for the anemometers depend on the mean horizontal

wind speed u.

The turbulent fluctuations a′i are calculated as follows:

ãi =

{
ã0 i < K
L−1
L
ãi−1 +

1
L
ai i ≥ K (4.3-a)

ã0 =
1

K

K−1∑

i=0

ai (4.3-b)
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a′i = ai − ãi (4.3-c)

with K = 2,048 and L = 4,000. Here, L of course is not to be confused with the

latent heat of evaporation nor with the Obukhov length. The “running average”

ã evolves with a typical time scale 4,000/20 Hz = 200 s which is considerably

larger than that of the turbulence itself. It is therefore in principle possible

to identify it with the turbulent average a in the turbulence equations. It is

also shown in appendix A that the low-pass linear filter described in (4.3-a) is

a digital approximation to a sensor whose analog input-output relationship is

that of a RC-circuit (Lumley and Panofsky, 1964 pp. 48–50; see also Appendix

A). Therefore, ã is the time series that would be “seen” by a very slow response

instrument measuring the mean flow.

Given the turbulent fluctuations a′i, it is now possible to calculate statistics

such as variances, covariances, etc. Consider the simplest case, that of estimating

the standard deviation σa. It still can be calculated in many slightly different

ways. We present two; the first is

s2a,1 =
1

M

N∑

i=K

(a′i)
2 , (4.4)

where N = 30, 975 and M = N −K + 1, which is true to the identification of ã

with a turbulent mean evolving in time. The second is

s2a,2 =
1

M

N∑

i=K

(a′i −ma)
2 (4.5-a)

ma =
1

M

N∑

i=K

a′i . (4.5-b)
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Figure 4.1 – σθ calculated with (4.4) (diamonds) and (4.5) (squares) for Aug

03.

Notice how ma is simply a residual sample average of the turbulent fluctuations.

In practice, the difference between the two procedures is usually very small. As

an example, figure 4.1 shows the standard deviation of temperature fluctuations

calculated by means of (4.4) and (4.5) on the night of Aug 03rd. The statistics

presented in these chapters were obtained with the first procedure. In general,

for any three quantities a, b and c the covariances are, therefore,

a′b′ =
1

M

N∑

i=K

a′ib
′
i , (4.6-a)

a′b′c′ =
1

M

N∑

i=K

a′ib
′
ic

′
i . (4.6-b)
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Table 4.5 – Meterological means for Aug 03.

Day Time θ/ ◦C q/ g kg−1 p/ Pa u/ ms−1 Z/ ◦ Rn/Wm−2

03 2045 28.24 18.48 95, 621 7.20 200.00 −29.00
03 2115 27.99 18.11 95, 639 7.99 206.00 −30.70
03 2145 27.73 17.80 95, 657 8.09 205.00 −30.37
03 2215 27.75 17.19 95, 680 8.79 208.00 −30.96
03 2245 27.68 16.55 95, 702 8.86 211.00 −30.96
03 2315 27.41 16.39 95, 697 8.96 211.00 −31.61
03 2345 26.83 16.44 95, 697 7.95 209.00 −32.55
03 0015 26.07 16.61 95, 704 6.68 205.00 −33.17
03 0045 25.78 16.23 95, 691 7.67 206.00 −33.83
03 0115 25.63 15.82 95, 677 8.00 208.00 −35.35
03 0145 25.33 15.63 95, 665 7.61 207.00 −36.30
03 0215 25.17 15.46 95, 659 7.98 207.00 −36.55
03 0245 24.93 15.45 95, 648 8.17 209.00 −36.37
03 0315 24.67 15.54 95, 632 8.30 209.00 −36.80
03 0345 24.64 15.58 95, 631 8.50 210.00 −38.01
03 0415 24.45 15.57 95, 618 8.45 209.00 −39.17
03 0445 24.20 15.55 95, 615 8.19 209.00 −39.79
03 0515 23.96 15.53 95, 619 7.57 208.00 −39.24
03 0545 23.79 15.48 95, 640 7.46 212.00 −38.15
03 0615 23.69 15.38 95, 638 7.37 210.00 −37.35
03 0645 23.58 15.34 95, 652 7.01 209.00 −30.88
03 0715 23.71 15.39 95, 673 6.80 208.00 −15.41

In tables 4.5 , 4.6 and 4.7 , the average values of temperature, specific

humidity, atmospheric pressure, wind direction and net radiation recorded at

the PAM station are listed, together with the mean wind speed at 2.5 m from

the fast cup anemometer at the EC station for the nights of (03), (06, 07 & 08),

and (10 & 11), respectively. The values are for (26-min.) short runs. The times

listed are local, and correspond to the center of each run.
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Table 4.6 – Meterological means for Aug 06, 07 and 08.

Day Time θ/ ◦C q/ g kg−1 p/ Pa u/ ms−1 Z/ ◦ Rn/Wm−2

06 1945 22.06 10.05 96,699 3.99 21.00 -19.77
06 2015 20.92 9.93 96,730 4.90 21.00 -36.22
06 2045 19.48 9.72 96,777 4.86 10.00 -41.71
06 2115 18.55 9.70 96,808 4.35 18.00 -40.98
06 2145 17.68 9.48 96,862 4.34 20.00 -44.54
06 2215 17.08 9.22 96,922 4.52 23.00 -46.58
06 2245 16.41 9.05 96,945 3.96 22.00 -47.45
06 2315 15.88 8.84 96,968 4.14 19.00 -46.83
06 2345 15.34 8.70 96,983 3.54 18.00 -44.62
06 0015 14.96 8.62 97,017 3.12 27.00 -45.60
06 0045 14.54 8.57 97,040 3.21 35.00 -45.56
06 0115 13.95 8.52 97,056 2.58 43.00 -46.36
06 0145 13.66 8.44 97,043 3.01 32.00 -46.80
06 0215 13.64 8.37 97,020 3.72 24.00 -49.27
06 0245 13.17 8.26 97,041 3.23 24.00 -49.70
06 0315 12.65 8.15 97,054 2.96 23.00 -50.54
06 0345 12.24 8.07 97,061 2.86 19.00 -52.54
06 0415 11.88 7.98 97,088 2.41 20.00 -53.96
07 1945 20.86 6.37 96,815 2.83 57.00 -34.00
07 2015 19.54 6.48 96,815 2.18 66.00 -49.63
07 2045 19.21 6.36 96,822 1.82 67.00 -49.92
07 2145 19.51 6.11 96,863 1.67 45.00 -46.18
08 2045 20.05 8.30 96,619 2.54 151.00 -47.20
08 2145 19.27 7.99 96,649 2.47 149.00 -45.31
08 2215 19.30 7.87 96,671 3.05 169.00 -48.18
08 2245 19.19 7.82 96,686 3.25 180.00 -48.32
08 2315 19.32 7.70 96,688 3.44 190.00 -48.98

The fluxes adopted for the short runs in this study are available in the

FIS (FIFE INFORMATION SYSTEM) database, which is resident at the labo-

ratory for Terrestrial Physics (LTP) at NASA/Goddard Space Flight Center in

Greenbelt, MD. They are not simply the covariances w′u′ , w′θ′ and w′q′ , be-

cause corrections for the slow response of the fast-cup anemometer (Hicks, 1972;
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Table 4.7 – Meterological means for Aug 10 and 11.

Day Time θ/ ◦C q/ g kg−1 p/ Pa u/ ms−1 Z/ ◦ Rn/Wm−2

10 2245 19.38 9.34 96, 929 3.38 187.00 −38.84
10 2315 18.88 9.41 96, 928 3.41 189.00 −38.44
10 2345 18.66 9.50 96, 937 3.41 189.00 −36.26
10 0015 18.38 9.45 96, 954 3.39 192.00 −39.02
10 0045 18.18 9.34 96, 952 3.30 192.00 −38.62
10 0115 18.13 9.29 96, 937 3.44 196.00 −38.91
10 0145 17.79 9.29 96, 930 3.23 197.00 −38.33
10 0215 17.62 9.27 96, 916 3.25 198.00 −37.93
10 0245 17.67 9.30 96, 931 2.68 202.00 −29.14
10 0315 17.62 9.32 96, 932 2.80 202.00 −30.63
10 0415 17.40 9.52 96, 947 2.34 211.00 −17.69
11 1945 24.15 9.84 96, 727 3.04 168.00 −22.00
11 2015 22.67 9.79 96, 744 2.70 168.00 −39.60
11 2045 22.24 9.71 96, 748 3.25 166.00 −44.55
11 2115 21.86 9.74 96, 796 3.28 167.00 −43.78
11 2145 21.71 9.83 96, 849 3.38 165.00 −42.22
11 2215 21.44 9.91 96, 885 3.60 167.00 −42.33
11 2245 21.33 9.92 96, 886 3.90 166.00 −42.29
11 2315 20.86 9.94 96, 894 3.67 168.00 −37.31
11 2345 21.31 9.92 96, 911 3.81 172.00 −19.07
11 0015 21.04 9.90 96, 914 3.45 173.00 −34.70
11 0045 20.63 9.76 96, 904 3.71 171.00 −41.64
11 0115 20.48 9.66 96, 892 3.83 174.00 −40.22
11 0145 19.21 9.73 96, 877 3.30 180.00 −37.53
11 0215 18.69 9.78 96, 881 3.41 177.00 −38.22
11 0245 18.48 9.75 96, 869 3.64 182.00 −39.31
11 0315 18.34 9.70 96, 875 3.52 180.00 −38.91
11 0345 18.27 9.65 96, 882 3.54 178.00 −38.69
11 0415 18.24 9.55 96, 891 3.35 181.00 −38.48
11 0445 18.24 9.51 96, 881 3.65 187.00 −38.48
11 0515 17.95 9.42 96, 864 3.56 186.00 −38.70
11 0545 17.82 9.21 96, 858 3.47 182.00 −37.86
11 0615 17.68 9.09 96, 866 3.35 183.00 −35.17
11 0645 17.84 9.02 96, 883 3.40 186.00 −26.49
11 0715 18.60 9.18 96, 911 3.28 182.00 −0.58
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Moore, 1986), density effects due to water vapor (Webb et al, 1980) plus a ro-

tation of coordinates to take into account non-zero values of w measured by the

vertical propeller anemometer have been applied (Wesely, 1991 — personal com-

munication). Of those, only the corrections for the u′-sensor slow time response

are usually significant for the data set analyzed. For statistics such as θ′θ′ and

w′w′ , however, the above-mentioned corrections are insignificant and were not

applied. For the nights of (03), (06, 07 & 08) and (10 & 11) of August, 1989,

Tables 4.8 , 4.9 and 4.10 list the corresponding values of flux-related values: sen-

sible and latent heat fluxes, friction velocity, and the “friction” temperature and

humidity (or turbulent temperature and humidity scales) θ∗ and q∗ introduced

in Chapter 2.

For the long runs listed in Table 4.3 , mean values are simply the arithmetic

mean of the corresponding two consecutive short runs, and are listed in table

4.11 . A “new” set of fluxes was calculated for the long runs, by integrating the

cospectra for w,u, w,θ and w,q whose calculation is detailed is Chapter 5. This

allowed corrections to the limited time response of the fast-cup anemometer to

be applied in a straightforward way (Hicks, 1972; Moore, 1986) for the obtention

of u∗; H and LE were calculated in the same way to keep the procedure for

calculating fluxes for the long runs uniform.

The flux and stability values obtained are listed in table 4.12 .

It is also useful to analyze the data as they would have been measured

by idealized slower instruments with a time constant of 0.5 s. This is done using

the same linear recursive low-pass filter introduced in (4.3) to obtain turbulent



78

Table 4.8 – Flux variables for Aug 03.

Day Time H/Wm−2 LE/Wm−2 u∗/ ms−1 θ∗/ K q∗/ g kg
−1 ζ

03 20:45 −36.85 46.42 0.4884 −0.0676 0.0357 0.008
03 21:15 −29.07 38.94 0.4826 −0.0539 0.0303 0.006
03 21:45 −30.45 40.61 0.4871 −0.0559 0.0312 0.007
03 22:15 −29.97 40.75 0.4876 −0.0550 0.0313 0.006
03 22:45 −34.81 43.02 0.4934 −0.0631 0.0326 0.007
03 23:15 −32.00 38.90 0.4775 −0.0599 0.0304 0.007
03 23:45 −30.81 34.19 0.4582 −0.0600 0.0278 0.008
03 00:15 −28.98 31.31 0.4215 −0.0612 0.0276 0.010
03 00:45 −30.62 36.79 0.4673 −0.0582 0.0292 0.008
03 01:15 −31.58 36.98 0.4863 −0.0577 0.0282 0.007
03 01:45 −29.29 32.04 0.4545 −0.0572 0.0261 0.008
03 02:15 −26.41 29.49 0.4583 −0.0511 0.0238 0.007
03 02:45 −25.12 29.21 0.4632 −0.0481 0.0233 0.006
03 03:15 −30.20 29.73 0.4859 −0.0551 0.0226 0.007
03 03:45 −29.78 31.10 0.4990 −0.0529 0.0230 0.006
03 04:15 −27.85 29.15 0.5004 −0.0493 0.0215 0.006
03 04:45 −21.48 24.17 0.4454 −0.0427 0.0200 0.006
03 05:15 −25.29 25.30 0.4530 −0.0494 0.0206 0.007
03 05:45 −21.50 22.58 0.4298 −0.0442 0.0193 0.007
03 06:15 −23.60 24.27 0.4254 −0.0490 0.0210 0.008
03 06:45 −19.13 24.19 0.4184 −0.0404 0.0213 0.007
03 07:15 −10.92 28.42 0.4011 −0.0240 0.0260 0.004
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Table 4.9 – Flux variables for Aug 06, 07 and 08.

Day Time H/Wm−2 LE/Wm−2 u∗/ ms−1 θ∗/ K q∗/ g kg
−1 ζ

06 19:45 −25.62 34.54 0.2444 −0.0912 0.0509 0.045
06 20:15 −34.26 28.42 0.3233 −0.0918 0.0315 0.027
06 20:45 −33.55 26.82 0.3405 −0.0849 0.0280 0.023
06 21:15 −27.29 20.66 0.2834 −0.0827 0.0258 0.032
06 21:45 −27.65 18.89 0.2901 −0.0815 0.0229 0.031
06 22:15 −30.23 19.30 0.3048 −0.0846 0.0222 0.029
06 22:45 −30.66 17.00 0.2773 −0.0941 0.0215 0.040
06 23:15 −30.58 17.30 0.2790 −0.0931 0.0217 0.039
06 23:45 −27.67 14.82 0.2416 −0.0971 0.0214 0.055
06 00:15 −18.95 9.45 0.1933 −0.0830 0.0170 0.073
06 00:45 −15.73 8.06 0.1728 −0.0769 0.0162 0.085
06 01:15 −9.93 4.20 0.1149 −0.0729 0.0126 0.184
06 01:45 −12.25 5.87 0.1502 −0.0687 0.0135 0.102
06 02:15 −19.94 9.09 0.2039 −0.0824 0.0154 0.066
06 02:45 −23.18 8.89 0.2124 −0.0918 0.0144 0.069
06 03:15 −21.09 7.80 0.1943 −0.0911 0.0138 0.082
06 03:45 −15.16 4.25 0.1791 −0.0709 0.0081 0.076
06 04:15 −11.26 1.79 0.1293 −0.0729 0.0047 0.151
07 19:45 −27.72 27.21 0.1226 −0.1958 0.0792 0.396
07 20:15 −16.48 12.90 0.0740 −0.1920 0.0619 1.093
07 20:45 −9.21 4.03 0.0252 −0.3147 0.0566 15.880
07 21:45 −14.91 6.61 0.0431 −0.2981 0.0544 5.133
08 20:45 −15.46 4.89 0.0745 −0.1795 0.0234 1.039
08 21:45 −27.73 7.48 0.1064 −0.2248 0.0250 0.643
08 22:15 −26.42 4.87 0.1342 −0.1698 0.0129 0.307
08 22:45 −30.67 9.65 0.1540 −0.1716 0.0222 0.234
08 23:15 −28.32 8.81 0.1693 −0.1442 0.0185 0.163
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Table 4.10 – Flux variables for Aug 10 and 11.

Day Time H/Wm−2 LE/Wm−2 u∗/ ms−1 θ∗/ K q∗/ g kg
−1 ζ

10 22:45 −25.08 4.88 0.1821 −0.1184 0.0095 0.117
10 23:15 −21.79 3.98 0.1755 −0.1066 0.0080 0.114
10 23:45 −22.00 3.97 0.1877 −0.1005 0.0075 0.094
10 00:15 −24.42 5.22 0.1885 −0.1110 0.0098 0.103
10 00:45 −23.80 4.78 0.1818 −0.1121 0.0093 0.112
10 01:15 −24.93 4.63 0.1952 −0.1094 0.0084 0.095
10 01:45 −21.53 3.75 0.1792 −0.1028 0.0074 0.106
10 02:15 −21.85 3.67 0.1877 −0.0995 0.0069 0.094
10 02:45 −19.79 4.51 0.1784 −0.0948 0.0089 0.098
10 03:15 −16.37 3.57 0.1840 −0.0760 0.0068 0.074
10 04:15 −11.10 3.64 0.1587 −0.0597 0.0081 0.078
11 19:45 −19.14 12.18 0.1859 −0.0902 0.0238 0.080
11 20:15 −20.43 4.78 0.1084 −0.1642 0.0159 0.444
11 20:45 −34.62 5.74 0.1826 −0.1649 0.0113 0.159
11 21:15 −41.56 6.89 0.1983 −0.1820 0.0125 0.149
11 21:45 −43.15 6.96 0.2130 −0.1757 0.0117 0.125
11 22:15 −40.29 6.63 0.2251 −0.1551 0.0106 0.099
11 22:45 −52.65 9.32 0.2793 −0.1632 0.0120 0.068
11 23:15 −34.75 6.94 0.2278 −0.1319 0.0109 0.082
11 23:45 −24.56 10.20 0.2261 −0.0940 0.0162 0.058
11 00:15 −30.93 8.07 0.2159 −0.1239 0.0134 0.085
11 00:45 −43.84 8.61 0.2561 −0.1479 0.0120 0.073
11 01:15 −44.44 9.85 0.2607 −0.1472 0.0135 0.070
11 01:45 −21.93 3.81 0.1717 −0.1098 0.0079 0.122
11 02:15 −27.45 4.70 0.2003 −0.1176 0.0083 0.096
11 02:45 −26.23 4.38 0.2011 −0.1119 0.0077 0.091
11 03:15 −25.35 4.23 0.1845 −0.1178 0.0081 0.114
11 03:45 −29.57 5.01 0.1952 −0.1298 0.0091 0.112
11 04:15 −27.40 4.70 0.1839 −0.1277 0.0090 0.124
11 04:45 −26.41 4.61 0.1965 −0.1152 0.0083 0.098
11 05:15 −24.74 5.47 0.1810 −0.1170 0.0107 0.118
11 05:45 −25.75 5.67 0.1810 −0.1218 0.0110 0.122
11 06:15 −24.74 4.93 0.1722 −0.1229 0.0101 0.137
11 06:45 −18.75 5.62 0.1583 −0.1014 0.0125 0.132
11 07:15 −13.32 12.41 0.1931 −0.0592 0.0227 0.049
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Table 4.11 – Meteorological means for long runs.

Day Time θ/ ◦C q/ g kg−1 p/ Pa u/ ms−1

03 21:30 27.86 18.15 95,648 8.04
03 22:30 27.72 17.04 95,691 8.82
03 23:30 27.12 16.58 95,697 8.45
03 00:29 25.92 16.58 95,698 7.18
03 01:30 25.48 15.87 95,671 7.81
03 02:30 25.05 15.60 95,653 8.08
03 03:30 24.65 15.71 95,632 8.40
03 04:30 24.32 15.71 95,616 8.32
03 05:30 23.87 15.65 95,629 7.51
03 06:30 23.63 15.50 95,645 7.19
06 20:30 20.20 9.88 96,753 4.88
06 21:30 18.11 9.65 96,835 4.34
06 22:30 16.74 9.18 96,933 4.24
06 23:30 15.61 8.82 96,975 3.84
06 00:29 14.75 8.64 97,028 3.16
06 01:30 13.80 8.52 97,049 2.79
06 02:30 13.40 8.36 97,030 3.47
06 03:30 12.44 8.15 97,058 2.91
07 20:30 19.37 6.44 96,818 2.00
08 22:00 19.28 7.96 96,660 2.76
08 23:00 19.25 7.80 96,687 3.34
10 23:00 19.13 9.43 96,929 3.34
10 24:00 18.52 9.53 96,945 3.40
10 01:00 18.15 9.37 96,944 3.40
10 02:00 17.71 9.33 96,923 3.37
10 03:00 17.64 9.37 96,932 3.24
11 20:30 22.46 9.81 96,746 2.98
11 21:30 21.78 9.84 96,823 3.33
11 22:30 21.38 9.97 96,886 3.75
11 23:30 21.09 9.99 96,902 3.74
11 00:30 20.84 9.89 96,909 3.58
11 01:30 19.85 9.75 96,884 3.57
11 02:30 18.59 9.82 96,875 3.52
11 03:30 18.30 9.73 96,878 3.53
11 04:30 18.24 9.59 96,886 3.50
11 05:30 17.88 9.37 96,861 3.51
11 06:30 17.76 9.10 96,874 3.38
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Table 4.12 – Flux variables for long runs.

Day Time H/Wm−2 LE/Wm−2 u∗/ ms−1 θ∗/ K q∗/ g kg
−1 ζ

03 21:30 −22.98 35.64 0.4247 −0.0484 0.0315 0.008
03 22:30 −25.68 38.98 0.4537 −0.0506 0.0322 0.007
03 23:30 −24.84 35.62 0.4260 −0.0521 0.0312 0.008
03 00:30 −23.50 32.11 0.4172 −0.0501 0.0286 0.009
03 01:30 −24.22 33.24 0.4262 −0.0505 0.0289 0.008
03 02:30 −20.95 28.94 0.4230 −0.0439 0.0253 0.007
03 03:30 −23.41 29.72 0.4634 −0.0448 0.0237 0.006
03 04:30 −19.31 24.85 0.4348 −0.0393 0.0211 0.006
03 05:30 −17.97 22.93 0.4223 −0.0376 0.0200 0.006
03 06:30 −16.89 24.08 0.3965 −0.0376 0.0223 0.007
06 20:30 −31.82 27.65 0.3102 −0.0886 0.0318 0.029
06 21:30 −23.94 20.11 0.2937 −0.0699 0.0242 0.026
06 22:30 −28.26 19.89 0.2816 −0.0855 0.0248 0.035
06 23:30 −25.32 15.37 0.2522 −0.0852 0.0213 0.044
06 00:30 −15.56 8.45 0.1731 −0.0760 0.0170 0.084
06 01:30 −9.90 4.97 0.1304 −0.0640 0.0132 0.125
06 02:30 −17.13 8.20 0.1844 −0.0782 0.0153 0.077
06 03:30 −15.33 6.07 0.1777 −0.0724 0.0117 0.077
07 20:30 −12.62 6.21 0.0573 −0.1898 0.0384 1.882
08 22:00 −29.00 9.18 0.1229 −0.2036 0.0265 0.445
08 23:00 −27.12 9.65 0.1476 −0.1584 0.0232 0.239
10 23:00 −19.91 5.46 0.1724 −0.0992 0.0112 0.111
10 24:00 −19.18 5.30 0.1769 −0.0930 0.0106 0.099
10 01:00 −22.00 5.99 0.1777 −0.1061 0.0119 0.112
10 02:00 −18.66 4.45 0.1730 −0.0922 0.0091 0.103
10 03:00 −15.47 4.77 0.1731 −0.0764 0.0097 0.085
11 20:30 −25.74 6.98 0.1483 −0.1510 0.0170 0.225
11 21:30 −37.20 8.95 0.1937 −0.1667 0.0166 0.146
11 22:30 −41.17 10.38 0.2364 −0.1509 0.0157 0.089
11 23:30 −26.90 10.10 0.2142 −0.1087 0.0169 0.077
11 00:30 −31.54 9.78 0.2263 −0.1205 0.0154 0.077
11 01:30 −30.33 8.60 0.2130 −0.1227 0.0144 0.089
11 02:30 −24.43 6.23 0.1920 −0.1092 0.0115 0.098
11 03:30 −22.25 5.66 0.1732 −0.1101 0.0115 0.122
11 04:30 −21.62 5.55 0.1731 −0.1070 0.0113 0.119
11 05:30 −22.31 6.23 0.1729 −0.1105 0.0127 0.123
11 06:30 −19.88 6.29 0.1592 −0.1069 0.0139 0.140
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fluctuations at the 20 Hz time scale; a window of width W = 10 is used to low-

pass filter the raw series; this generates a filtered series a⊳ which corresponds to

the oversampled raw output of a slow instrument. The series is resampled every

W points and the resampled, smaller series is called ǎ. Finally, time trends are

removed from ǎ with a second filtering operation with the same time constant

(200 s) used in (4.3):

a⊳i =

{
a⊳0 i < W
W−1
W

a⊳i−1 +
1
W
ai i ≥W (4.7-a)

a⊳0 =
1

W
=

W−1∑

i=0

ai (4.7-b)

ǎj = a⊳jW (4.7-c)

˜̌aj =
{˜̌a0 j < X

Y−1
Y
˜̌aj + 1

Y
ǎj j ≥ X (4.7-d)

˜̌a0 =
1

Y

Y−1∑

j=0

ǎj (4.7-e)

ǎ′j = ǎj − ˜̌a (4.7-f)

where X = 204 and Y = 400, as opposed to K = 2, 048, L = 4, 000, since

the sampling is ten times slower. The ǎ′ series sampled at 2 Hz (every 0.5 s)

has a Nyquist frequency of 1 Hz, and will be useful for the computation of the

low-frequency part of spectra for the long runs. It has only 30, 976/10 = 3, 097

points, which considerably speeds up the calculation of statistics and spectral

characteristics (by means of numerical Fast Fourier Transforms). It is important

to notice that this is a simple and straighforward way to “filter out” the high

frequencies which are associated to the smallest turbulent scales, or eddies. This

in turn means that we will be analyzing only those eddies with a typical size
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larger than uTW , where TW = 0.5 s. Since the smallest values of u are of the

order of 2.0 m s−1 (see tables 4.5 , 4.6 and 4.7 ) this in general means eddies

larger than 1 m. Therefore, the “low-frequency” data series ǎ will tend to be less

influenced by sensor separation effects.

4.3 Dimensionless temperature and humidity gradients

In principle, the best way to assess the eqality of φH and φE is to mea-

sure them independently. Two facts that compound the problem of measuring

scalar gradients in stable conditions are the intrinsic larger scatter that is typ-

ically observed, discussed in section 2.6, and the lesser precision of humidity

measurements, which usually (until now at least) involve measurement of wet-

and dry-bulb temperatures. The present data set is not an exception. We tried

to assess the validity of equations (2.70) for φH and φE by substituting them in

(3.4) for the mean temperature and humidity differences, and comparing them

with observed values. Brutsaert (1982 p. 71) suggests that there may be an

upper limit of validity of the linear relationships (2.70) at around ζ = 1, beyond

which φH (and supposedly φE) become constant. Therefore, we actually used

φF =

{
1 + 5ζ ζ ≤ ζLIM
φLIM = 1 + 5ζLIM ζ > ζLIM

. (4.8)

The theoretical value of the scalar difference between two levels z1 and z2 is given

by

∆a = a1 − a2 =
a∗
κ

∫ ζ2

ζ1

φF

dζ

ζ
(4.9-a)

≡ a∗
κ
ΦF12(ζ1, ζ2) (4.9-b)
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where the following 3 cases can happen:

ΦF12 =





ln
(

ζ2
ζ1

)
+ 5(ζ2 − ζ1) ζ1 ≤ ζLIM and ζ2 ≤ ζLIM

ln
(

ζLIM

ζ1

)
+ 5(ζLIM − ζ1) + φLIM ln

(
ζ2

ζLIM

)
ζ1 ≤ ζLIM and ζ2 > ζLIM

φLIM ln
(

ζ2
ζ1

)
ζ1 > ζLIM and ζ2 > ζLIM

.

(4.10)

A “best” value (fit by eye) ζLIM = 0.4 was obtained by trial and error with succes-

sive plots of the theoretical against the observed temperature differences. The

result is shown in figure 4.2. Humidity differences are in vapor pressure units,

because this is how they were reported (Fritschen, 1991 — personal communi-

cation) at the EBBR station. Notice how the humidity differences are too noisy

for any conclusion to be drawn. In fact, there is a large number of points with

the “wrong” sign, suggesting an unphysical situation of countergradient fluxes.

These points correspond in their majority to the night of August 03rd, which

will be seen to exhibit dissimilarity between temperature and humidity for all

properties investigated. Even if the points from that night are deleted, the re-

maining plot is still too scattered for any firm conclusion to be reached, so the

subject has to be left at that.

It should be emphasized that the behavior displayed in figure 4.2 should

not be interpreted as indicating some malfunctioning of the EBBR station. On

the contrary, it seems to be usual under nocturnal stable conditions. For a

comparison, see for instance figure 5 of Fritschen and Simpson (1989).

Notice also that the temperature difference is remarkably well predicted

by (4.9), which lends confidence in the adopted φH . It is also worthwhile noticing

the unusually low value obtained for ζLIM compared to Hicks’s (1976) figure (see
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Figure 4.2 – Calculated (by means of (4.9) and (4.10)) and observed tempera-

ture and humidity differences

also Brutsaert, 1982, figure 4.6). Given the relatively few cases of strong (say,

larger than 0.5) stability ζ in the record analyzed, however, this observation too

will require further experimental investigation.

4.4 Temperature-humidity correlation

The correlation coefficient rθq was calculated for all short runs for the

raw turbulent fluctuations θ′, q′ and the low-pass filtered series θ̌′ and q̌′. In

each case, the calculations are straightforward and follow (2.26). The plot of

rθq versus stability is shown in figure 4.3, with diamonds indicating the high-

frequency 20 Hz series, and squares the low-frequency 2 Hz series. Notice that

the low-frequency correlation coefficient is most of the time closer to −1, i.e.,

filtering out the small-scale turbulence increases the correlation between the two
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scalars. With some exceptions, the correlation coefficient for the “raw” data is

around −0.8, and for the filtered data −0.9. When the coherence function for the

long runs is plotted, it will be seen that there is a wide frequency range for which

the “spectral” correlation approaches −1, as predicted by theory in Chapter 3.

02.0 Hz series

20.0 Hz series

�

r

�

q

10

2

52

10

1

52

10

0

52

10

�1

52

10

�2

52

10

�3

0

-0.2

-0.4

-0.6

-0.8

-1

Figure 4.3 – Correlation coefficient between θ′ and q′, θ̌′ and q̌′.

4.5 Dimensionless statistics for temperature and humid-

ity

Following the definitions in Chapter 3, an alternative way to asses simi-

larity is to look at the dimensionless φ functions for both scalars. The simplest

form for the non-dimensionalized standard deviation of turbulent quantities in
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the stable surface layer is (Tillman, 1972; Ariel and Nadezhina, 1976; Hicks,

1981; Wesely, 1988; De Bruin et al, 1992)

σw
u∗

=
√
φww = Aw (4.11-a)

σu
u∗

=
√
φuu = Au (4.11-b)

σθ
θ∗

=
√
φθθ = Aθ (4.11-c)

σq
q∗

=
√
φqq = Aq (4.11-d)

where Au, Aw, Aθ and Aq are constants. There is no deeper reason to assume the

functions φaa, and hence Aa, to be constant in the stable range of ζ; in the face

of the wide scatter that many of them present, however, this is probably the best

assumption that can be made for the time being. In Chapter 6, however, we will

be able to derive a “theoretical” φθθ function from a simple spectral model. That

function will be seen to vary extremely slowly with stability (on the stable range),

being virtually indistinguishable from a constant when statistical variability is

considered.

We begin by surveying some values from the literature with which to

compare the present study, in table 4.13 . It should be noted that some of the

values were inferred from pictures or are averages from tables, and that they do

not always appear explicitly in the papers referred. It is clear that there is still

considerable uncertainty regarding the values of the constants, of which Aw is

probably the one best known.

With the simple forms of (4.11), it is not only possible to estimate the

values of Aa by linear regression with the FIFE-89 data set, but also to test the
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Table 4.13 – Values of Aa in the literature.

Author Aw Au Aθ Aq Comments

Tillman (1972) − − 1.77 − From Wyngaard et al’s
(1971) Kansas data.

Tillman (1972) − − 2.50 − As ζ ↑ 0 .

Ariel and Nadezhina
(1977)

1.30 2.50 − −

Caughey et al.
(1979)

1.43 − 2.24 − Average of all runs at 4.0 m
(in their table 2)

Wesely (1988) 1.30 − 1.85 1.85 Aq assumed equal to Aθ.

Smedmann (1988) 1.28 2.30 − −

Högström (1990) 1.32 − 2.50 − Values deduced from
Högström’s figures.

Weaver (1990) − − 2.57 2.17 Average values of Weaver’s
regressions.

Wang and Mitsuta
(1991)

1.14 − 3.00 − Measured in the Gobi
desert.

De Bruin et al. (1993) 1.50 2.50 2.90 −

hypothesis Aθ = Aq. Notice that, by forcing the regression through the origin,

there are two estimators for Aa, depending on the choice of σa or a∗ as the

independent variable. We have performed the calculations both for short and

long runs. For the short runs, the standard deviations were calculated with the

procedure outlined in section 4.2. In the case of long runs, the standard deviations

are obtained from the integral of the respective spectra, which are presented in

Chapter 5, whereas the fluxes, and therefore u∗, θ∗ and q∗ were calculated from

the integral of the respective cospectra, as mentioned earlier.
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The regression parameters thus obtained, and their standard errors, are

shown in tables 4.14 , 4.15 , 4.16 and 4.17 for each of the possible cases. The

results are always presented with and without the data points from the night of

August 03rd, since we believe that this night showed a strong (and unexplained)

dissimilarity between temperature and humidity. Evidence for this has already

been seen in the plots of humidity differences, and will continue to show up in

this and the next chapter. The corresponding plots, with the regression lines

as calculated in tables 4.16 and 4.17 are shown in figures 4.4, 4.5, 4.6 and 4.7.

In those tables, a indicates the variable being regressed, r is the correlation

coefficient of the regression, RMSE is the root mean square error of the linear

estimate, in the same units as a; Â or Â−1 is the estimate for the constant

A, and σ̂A is (the estimate of) the standard deviation of Â. For example, in

table 4.14 , the regression for σw without the night of Aug 03rd has a correlation

coefficient of 0.91; the average of the square root of the square of the devations

of σw from the regression line is 0.033 m s−1 and the estimate for the regression

is Â = (1.399± 0.163).

Due to statistical variation alone, one would expect Aθ and Aq to be

different in the linear regressions. Moreover, some bias should also be expected

due to the fact that the temperature and humidity sensors were about 30 cm

apart. Therefore, in order to assess how similar temperature and humidity are

in this respect, we applied a statistical test whose null hypothesis is Aθ = Aq or

A−1
θ = A−1

q . For short and long runs, with and without the night of Aug 03, we
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Table 4.14 – Regression parameters of σa = Aaa∗ for short runs.

without Aug 03 with Aug 03

a r RMSE Â σ̂A r RMSE Â σ̂A
w 0.91 0.033 1.399 0.163 0.97 0.038 1.326 0.131
u 0.85 0.106 2.680 0.406 0.97 0.107 2.902 0.351
θ 0.70 0.056 1.833 0.175 0.65 0.058 1.892 0.143
q 0.76 0.017 2.000 0.199 0.74 0.018 2.231 0.203

Table 4.15 – Regression parameters of σa = Aaa∗ for long runs.

without Aug 03 with Aug 03

a r RMSE Â σ̂A r RMSE Â σ̂A
w 0.96 0.020 1.468 0.266 0.99 0.021 1.452 0.228
u 0.89 0.086 2.829 0.651 0.97 0.104 3.148 0.595
θ 0.84 0.032 1.999 0.289 0.68 0.045 2.071 0.220
q 0.95 0.005 2.216 0.409 0.95 0.006 2.326 0.393

Table 4.16 – Regression parameters of a∗ = A−1
a σa for short runs.

without Aug 03 with Aug 03

a r RMSE Â−1 σ̂A−1 r RMSE Â−1 σ̂A−1

w 0.92 0.024 0.705 0.094 0.98 0.028 0.747 0.088
u 0.77 0.039 0.359 0.038 0.96 0.037 0.339 0.033
θ 0.85 0.030 0.520 0.088 0.85 0.030 0.496 0.080
q 0.87 0.008 0.447 0.077 0.84 0.008 0.405 0.057

Table 4.17 – Regression parameters of a∗ = A−1
a σa for long runs.

without Aug 03 with Aug 03

a r RMSE Â−1 σ̂A−1 r RMSE Â−1 σ̂A−1

w 0.97 0.014 0.678 0.130 0.99 0.015 0.687 0.112
u 0.83 0.030 0.345 0.053 0.96 0.033 0.313 0.043
θ 0.91 0.016 0.491 0.119 0.88 0.021 0.463 0.117
q 0.95 0.002 0.444 0.084 0.95 0.002 0.424 0.065
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Figure 4.4 – Regressions between σa and a∗ for short runs without Aug 03.
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Figure 4.5 – Regressions between σa and a∗ for short runs with Aug 03.



93

�

w

=ms

�1

u

�

=

m

s

�

1

0.750.60.450.30.150

0.5

0.4

0.3

0.2

0.1

0

�

u

=ms

�1

u

�

=

m

s

�

1

1.51.20.90.60.30

0.5

0.4

0.3

0.2

0.1

0

�

�

=K

j

�

�

j

=

K

0.50.40.30.20.10

0.25

0.2

0.15

0.1

0.05

0

�

q

=g kg

�1

q

�

=

g

k

g

�

1

0.10.080.060.040.020

0.05

0.04

0.03

0.02

0.01

0

Figure 4.6 – Regressions between σa and a∗ for long runs without Aug 03.
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Figure 4.7 – Regressions between σa and a∗ for long runs with Aug 03.
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calculate

u =
|Âθ − Âq|

min(σ̂Aθ
, σ̂Aq

)
, (4.12-a)

p = P [U ≥ u] (4.12-b)

and accept the null hypothesis if p > 0.05, which sets the significance level at

10%. The symbols u and p are used here following common statistical practice,

and hopefully will not cause confusion with horizontal velocity or pressure; also,

P [U ≥ u] is the standard notation for the probablity that the random variable

U exceeds the quantile u, and will depend on the underlying probability distri-

bution of U . The u-statistic has Student’s t-distribuition, but assuming it to be

normally distributed to evaluate p makes the test more conservative (Benjamin

and Cornell, 1970 pp. 432–439). The results are presented in tables 4.18 and

4.19 . Notice that we can only reject the null hypothesis when data from the

night of Aug 03rd are included, and even then only for the short runs.

Another way to analyze turbulence statistics is to plot the dimensionless

functions φab and φabc defined in Chapter 2 against the stability ζ. We therefore

calculated the four functions φaa, φaaa, φwaa and φwwa, for a = θ and a = q,

both for short and long runs. The statistics for the long runs can be obtained by

simply merging the series of a′i for two consecutive short runs. An alternative way

is to integrate the higher-order cospectra presented in the next chapter; results

for both procedures are presented.

We begin by presenting the statistics for the short runs in figures 4.8 and

4.9; the corresponding statistics for the long runs, calculated in a conventional
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Table 4.18 – Test for equality of the slopes Aθ and Aq.

without Aug 03 with Aug 03
data series u p u p

short runs 0.954 0.170 2.371 0.009

long runs 0.751 0.226 1.159 0.123

Table 4.19 – Test for equality of the slopes A−1
θ and A−1

q .

without Aug 03 with Aug 03
data series u p u p

short runs 0.948 0.172 1.596 0.055

long runs 0.560 0.288 0.600 0.274

way by means of simply merging two adjacent short runs and their θ′i and q′i

series are shown next on figures 4.10 and 4.11. Finally, third moments calculated

by integration of higher-order cospectra are shown in figures 4.12 and 4.13.

There is a considerable improvement in the overall appearance of the

dimensionless statistics when long runs are used, regardless of whether conven-

tional (figures 4.10 and 4.11) or spectral (figures 4.12 and 4.13) estimates are

made. Moreover, the long run statistics lead us to important conclusions. The

overall behavior of φaa and φaaa seems to be constant with stability, in spite of

the considerable scatter which also appears, however, in other works (Högström,

1990; Wang and Mitsuta, 1991). Temperature skewness is postive (since θ∗ < 0)
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Figure 4.8 – Dimensionless temperature statistics for short runs.
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Figure 4.9 – Dimensionless humidity statistics for short runs.
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Figure 4.10 – Dimensionless temperature statistics for long runs from time

series.
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Figure 4.11 – Dimensionless humidity statistics for long runs from time series.
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Figure 4.12 – Dimensionless temperature statistics for long runs from spectra.
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Figure 4.13 – Dimensionless humidity statistics for long runs from spectra.



99

indicating the downward heat flux, whereas humidity skewness is negative (since

q∗ > 0) indicating the upward water vapor flux.

More interesting is the behavior of φwaa and φwwa (a = θ or q) for the long

runs. It is clear that the assumptions

∂ φwaa

∂ζ
= 0 (4.13-a)

∂ φwwa

∂ζ
= 0 (4.13-b)

in stable conditions are very reasonable. Remember that these assumptions

simplify the dimensionless budgets of variances and covariances in the set of

equations (2.28), implying the simpler form (3.37) for the dimensionless scalar

variance and covariance budgets, which was used in Chapter 3 to derive r2θq = 1

and φH = φE . This technique of plotting φwaa and φwwa against zeta in order to

infer their behavior from one-level measurements seems to have been first used

by Wyngaard et al (1978) in unstable conditions.

With hindsight, the results presented here are not surprising. In fact,

Wyngaard (1973) shows how the main features of turbulence can be predicted

by an asymptotic analysis of very stable conditions. Then, the turbulence should

become independent of z (that is to say, homogenenous in the vertical direction),

with the result that the dimensionless functions φaa, φaaa, φwaa and φwwa are

constant with ζ, whereas the dimensionless gradients φF are asymptotically linear

with ζ. The constancy of the dimensionless statistics with stability is essentially

confirmed in the figures above, both for temperature and humidity, providing

further evidence of their similar behavior.
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Wyngaard also showed that the averaging time required for calculating

2nd-order moments in the surface layer could be of the order of 1 hour, for

accuracies of about 10 to 20%. It is only natural to expect 3rd-order statistics to

require even longer averaging times, so the improvement noticed in the 3rd-order

statistics for the long runs should not be surprising.

It is also harder to estimate the uncertainties involved in the 3rd-order

statistics. A possible approach is the following: consider φwwa, and assume (as a

rough approximation) that w and a are jointly normally distributed with |rwa| =

0.3, which is an average value often obtained for stable conditions (Hicks, 1981;

see also page 100); then, we know that the population value of w′w′a′ is zero

(Bendat and Piersol, 1986, section 3.3). The standard deviation of the (sample)

value of w′w′a′ in this case is given by (Lumley and Panofsky, 1964, p. 36)

σ2
w′w′a′

≈ 2τi
T w′4a′2 (4.14)

where T is the averaging time, and τi is the integral time scale of the process

w′w′a′. Because the population value of w′w′a′ is zero, we may set an accuracy

ǫ with respect to u∗ and a∗,

ǫ2 ≡
σ2

w′w′a′

u4∗a
2
∗

, (4.15)

so that

T =
2τi
ǫ2
w′4a′2

u4∗a
2
∗

(4.16-a)

=
2τi
ǫ2

(
w′

σw

)4(
a′

σa

)2 (
σw
u∗

)4(
σa
a∗

)2

. (4.16-b)
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The 6th-order moment above can be calculated using the moment-generating

function of a joint normal distribution with unit variances and |rwa| = 0.3 (Bendat

and Piersol, 1986, pp. 57–67); it is

(
w′

σw

)4(
a′

σa

)2

= 3 + 12r2wa = 4.08 (4.17)

so that (4.16) becomes

T =
2τi
ǫ2

4.08A4
wA

2
a , (4.18)

and for Aw = 1.3, Aa = 2.0 and ǫ = 0.2, this gives

T = 2330τi , (4.19)

but τi still needs to be properly estimated. Because spectral characteristics of

higher-order moments are not well known, we may roughly approximate τi with

the peak value of the w, a cospectrum. Using the expression (2.74-c) introduced

in Chapter 2 for f0,wa we obtain for near-neutral conditions (ζ = 0), f0,wa ≈ 0.30.

The corresponding peak frequency of the cospectrum is found by setting the

derivative of (2.72-b) equal to zero; it is 0.7430f0,wa = 0.22. At a height of 2.5 m

and an average horizontal wind speed of 8 m s−1, typical of the near-neutral

conditions in this study, the peak frequency will be 0.70 Hz, whence τi = 1.42 s

and T = 3,309 s = 55.16 min..

Even though this result is undoubtedly pleasant to the author, it has to

be regarded as the mere exercise it is; it is quite likely that w′ and a′ are not

jointly normal: it is known that scalars exhibit “ramp” structures associated with

skewness values different from zero (Antonia and Atkinson, 1976; Antonia and
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Van Atta, 1978; Kikuchi and Chiba, 1985). Still, Thorodsen and Van Atta (1992)

observed nearly gaussian probability distributions of w′ and θ′ in a wind tunnel

experiment; they were also able to obtain a fair representation of the random

variable w′θ′ by assuming w′ and θ′ to be jointly gaussian, as we are doing here.

Notice also that using the w, a instead of the w,wa cospectrum introduces yet

another layer of approximation.

Finally, the correlation coefficients rwθ and rwq were calculated for the

short runs, and are presented in figure 4.14 plotted against stability. Hicks (1981)

and Wesely (1988) give a value of about -0.3 for rwθ under stable conditions.

Notice that the plots do not contradict that value on the average, and that they

are very similar to each other. On the other hand, the scatter is too large, making

it very hard to estimate the correlation coefficients as a function of ζ. Of course,

this phenomenon was already present in the large scatter of the functions φθθ

and φqq shown above, since, from equation (2.26) in Chapter 2,

rwθ =
φwθ√
φwwφθθ

=
1

AwAθ

, (4.20)

so that the scatter in rwθ can only be as good (or bad), as that in figures 4.4-4.7

and 4.8-4.13. An analogous observation applies, of course, for rwq.

4.6 Closure

In this chapter, we analyzed the behavior of temperature and humidity

from the point of view of statistics in the time domain. Turbulent statistics

are relatively insensitive to the particular way to calculate them if the mean
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Figure 4.14 – Correlation coefficients rwθ and rwq for short runs.

tendency in time is first extracted by a high-pass filter operation with a time

constant of 200 s. The time-honored log-linear expression for φH fits the observed

temperature differences in the EBBR station well, but may have a limit of validity

as low as ζ = 0.4, beyond which its behavior is uncertain; this is compatible

with Högström’s (1990) re-evaluation of φH , which was done for ζ ≤ 0.5. The

temperature-humidity correlation coefficient rθq is about −0.8; using low-pass,

low-frequency (2 Hz) data instead of the original high-frequency (20 Hz) data

increases it to −0.9 on the average. This is a first indication that the spatial

separation of the temprature and humidity sensors may be an important cause

of understimation of |rθq|, more of which will be presented in the next chapter.

Thus, the correlation coefficient in stable conditions for FIFE-89 can safely be

assumed to be close to the “theoretical” value of −1 derived in Chapter 3, and

predicted by Hill (1989a). We used a hypothesis test to show that φθθ and φqq
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are statistically indistinguishable; moreover, the overall quality of the regressions

to obtain their (constant) values improves considerably when 52-min. long runs

are used, instead of the 26-min short runs. The same applies to the functions

φaa, φaaa, φwaa and φwwa plotted against stability ζ: the long runs show much

less scatter, and can be used to infer the constancy of the last two with ζ. The

superiority of the longer averaging times is confirmed by a rough estimate of the

errors involved using the (admittedly poor) hypothesis of joint normality of w′

and a′. The correlation coefficients rwθ and rwq were analyzed for the short runs,

as an alternative to φθθ and φqq, but (as expected) the same large scatter only

allows the average behavior to be inferred.



Chapter 5

A GALLERY OF (CO)SPECTRA

This chapter shows the analysis of the FIFE-89 long runs in the frequency do-

main. We calculated and compared temperature and humidity spectra (Sθ,θ and

Sq,q) and cospectra with vertical velocity (Sw,θ and Sw,q), coherence and phase

functions between θ′ and q′ and finally the higher-order cospectra Sc
θ,θθ and S

c
q,qq.

The spectral analysis discloses the strong similarity between θ′ and q′ except

during the night of Aug 03rd, confirming the pattern already apparent in the

statistical analysis of last chapter. Besides the evaluation of spectral similarity

between the 2 scalars, the asymptotic behavior in the low frequencies is analyzed.

Kader and Yaglom’s (1991) and Kader’s (1993) prediction of a −1 slope holds

for near-neutral conditions, but in the more stable cases the 0 slope of Kaimal’s

(1973) curves seems more likely. It is hypothesized that this change of behavior is

connected with the z-less nature of stable turbulence, indicating that the lower

frequencies scale with z under near-neutral (and probably unstable) , but not

stable, conditions. Finally, ample evidence is given for the validity of a −2 slope

for the higher-order cospectra in the inertial subrange, exactly as predicted in

Chapter 2.
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5.1 Data processing

Consider the time series a′i and ǎ
′
j (equations 4.3-a and 4.7-e) introduced

in Chapter 4, from a long run. They are regrouped in blocks of length LB and

relabeled as follows

a′i ⇒ a′k,l where i = LBk + l (5.1-a)

ǎ′i ⇒ ǎ′k,l where i = LBk + l (5.1-b)

where k will run from 0 to the number of blocks NB, and l from 0 to LB.

Averaging over blocks will provide an estimate of the population (ensemble)

averages. The time t from the beginning of a block k is counted as

t = l∆t (5.2-a)

t = l∆ť (5.2-b)

where ∆t = 0.05 s, ∆ť = 0.5 s. The series a′k,l and ǎ
′
k,l were analyzed separately.

Each long run yielded 60 blocks of length LB = 1,024 of a′, and 6 blocks of

the same length of ǎ′. Thus, k = 1, . . . , 60 for the high-frequency data, and

k = 1, . . . , 6 for the low-frequency data. (Remember that a long run consists

of 61,952 a′ data points measured at 20 Hz, and 6,195 ǎ′ data points generated

from the former by a low-pass filter with a cutoff frequency of 2 Hz. Of these,

1,024×60 = 61,440 points were actually used for the analysis of the a′ data, and

1,024×6 = 6,144 data points for the analysis of ǎ′. The 30,976−1,024×30 = 256

points remaining at the end of each short run composing the long run were

discarded.)
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The numerical Fourier transform of a block k of a′(t) is (Jenkins and

Watts, 1986 pp. 16–56; Bendat and Piersol, 1986 p. 371)

âkm ≡ ∆t

LB−1∑

l=0

a′k,l exp [−2π i nt]

= ∆t

LB−1∑

l=0

a′k,l exp

[
−2π i m

LB∆t
l∆t

]

= ∆t

LB−1∑

l=0

a′k,l exp

[
−2π i ml

LB

]
. (5.3)

If a′k,l is renormalized so that its sample mean is zero (which is convenient in

the present context), then âk0 is also zero. Solving (5.3) above then yields LB/2

complex Fourier coefficients âkm, m = 1, . . . , LB/2. Similarly, one can calculate

̂̌akm from the low-frequency series. Notice that in each case the frequencies corre-

sponding to the given Fourier coefficients are n = m/(LB∆t) and n = m/(LB∆ť).

Thus, the minimum and maximum frequencies (in Hz) obtained for each series

are

a′ ⇒ 0.019531 ≤ n ≤ 10.0 (5.4-a)

ǎ′ ⇒ 0.001953 ≤ n ≤ 1.0 , (5.4-b)

where the upper limits are the Nyquist frequencies for each series (Bendat and

Piersol, 1986, section 10.3). The cross-spectral density between two series a′, b′

at frequency m/(LB∆t) is then given by the average over all blocks,

Sa,b

(
m

LB∆t

)
= Sa,b;m =

2

NBLB∆t

NB∑

k=1

âkm
∗ b̂km . (5.5)
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Here, the average over NB blocks mimicks the ensemble average, whereas dividing

by LB∆t (the total record length) plays the role (numerically) of multiplication

by δ(0) in the definition of Si,j given in Chapter 2.

The Fourier coefficients âkm and b̂km can be calculated very efficiently by

means of the Fast Fourier Transform (FFT) (Press et al., 1993, pp. 496–536;

Bendat and Piersol, 1986, pp. 370–383). An algorithm similar to the one given

by Press et al. (1986, p. 507) was used for the FFT, except that all floating-

point operations were coded with complex arithmetic to make the code clearer,

and that recursion was used (i.e., the ability of a procedure to “call” itself).

The calculation of the cross-spectral densities, on the other hand, followed the

procedures of Chapter 11 of Bendat and Piersol. A Hanning window was applied

to the data series to reduce aliasing (Kaimal et al., 1989; Kaimal and Kristensen,

1991).

For each long run, 3 estimates of Sa,b were obtained; the first with ∆ť =

0.5 s, NB = 6, LB = 1,024 from the low-frequency data, and the other two with

∆t = 0.05 s, NB = 30, LB = 1,024 by analyzing the first and second 26-min.

periods within a long run separately. The analysis of low- and high-frequency

data separately is in essence the same technique used by Kaimal et al. (1972)

and Kaimal (1973).

Let n, Sa,b be the matrices of frequencies nr,m and cross-spectral densi-

ties Sa,b; r,m thus obtained; r = 0 represents the estimates from the ǎ, b̌ series,

whereas r = 1, 2 represents the estimates from the first and second short runs

of a′, b′. There is a total of 1,536 points spanning 4 decades, roughly from 10−3
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to 101 Hz. This number of points is too large to be plotted comfortably, so a

final smoothing is applied by grouping the data points into 128 frequency bins

arranged logarithmically:

nmin = 0.001953 Hz ≡ n0 (5.6-a)

nmax = 10.0 Hz ≡ n128 (5.6-b)

∆ =
lnnmax − lnnmin

128
(5.6-c)

np ≡ exp (lnn0 + p∆) . (5.6-d)

We now form the index sets

I+p ≡
{
(r,m) | np−1 < nr,m ≤ np ∧

Sc
a,b; r,m

a∗b∗
≥ 0

}
(5.7-a)

I−p ≡
{
(r,m) | np−1 < nr,m ≤ np ∧

Sc
a,b; r,m

a∗b∗
< 0

}
. (5.7-b)

Notice that the population (ensemble) cospectra Sc
a,b normalized by a∗b∗ are

always positive; (5.7-b) is defined in order to cope with the relatively infrequent

case when the sample cospectral density has the “wrong” sign due to statistical

variability. Now if N±
p is the number of points in each index set, we form the bin

averages

n
±

p ≡


 ∏

(r,m)∈I±p

nr,m




1/N±
p

(5.8-a)

S
c ±

a,b; p ≡


 ∏

(r,m)∈I±p

Sc
a,b; r,m



1/N±

p

(5.8-b)

S
q ±

a,b; p ≡


 ∏

(r,m)∈I±p

Sq
a,b; r,m



1/N±

p

(5.8-c)
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and finally

np = N+
p n

+

p +N−
p n

−

p (5.9-a)

Sa,b; p = N+
p S

+

a,b; p +N−
p S

−

a,b; p . (5.9-b)

It is a simple exercise to show that the geometric means defined in (5.8) preserve a

power law density. Thus, assume for simplicity the most usual case, I−p = {} (i.e.,

all sample normalized cospectral densities are positive, and the set containing the

negative ones is empty); then, if each point in I+p follows a power law

Sc
a,b; r,m = α(nr,m)

β , (5.10)

it follows from (5.8) above that

S
c

a,b; p = α(np)
β . (5.11)

Coherences and phases can be calculated from the smoothed Sa,b densities

following the definitions in Chapter 2, (2.42) and (2.43):

Γa,b; p ≡
|Sa,b; p|2

|Sa,a; p| |Sb,b; p|
(5.12-a)

ϑ+
p ≡ arctan

∣∣∣∣∣
S

q

a,b; p

S
c

a,b; p

∣∣∣∣∣ (5.12-b)

ϑp =





ϑ+
p if Sc

a,b; p ≥ 0 ∧ Sq
a,b; p ≥ 0

−ϑ+
p if Sc

a,b; p ≥ 0 ∧ Sq
a,b; p < 0

π − ϑ+
p if Sc

a,b; p < 0 ∧ Sq
a,b; p ≥ 0

ϑ+
p − π if Sc

a,b; p < 0 ∧ Sq
a,b; p < 0

. (5.12-c)

For the higher-order cospectra, say, Sa,bc, some care has to be taken. In

particular, densities involving specific humidity squared or cubed proved hard to

evaluate due to the very small numerical values of q′. This was circumvented by
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multiplying the humidity data by 1,000 throughout which effectively corresponds

to doing the calculations in units of grams (of water vapor) per kilogram, and

by subtracting the mean of each block from products of fluctuations before the

numerical FFT’s:

(b′c′)k,l ← (b′c′)k,l − b′c′k , (5.13)

where ← indicates the assignment operator in the computer program. The cor-

responding third-order moments are unaffected and can still be estimated by the

integral of the cospectrum Sc
a,bc, because

a′(b′c′ − b′c′) = a′b′c′ − a′b′c′ = a′b′c′ . (5.14)

With these provisions, the calculation of the densities Sa,bc were done exactly in

the same way as those for Sa,b, with the normalized b′c′ series substituted for b′.

5.2 Temperature and humidity spectra

In Chapters 2 and 3, we saw that the dimensionless quantities nSθ,θ/θ
2
∗

and nSq,q/q
2
∗ should be equal in case of perfect similarity. Thus, in principle the

spectra provide a way to analyze similarity at different scales. Figures 5.1-

5.6 show six spectra each, beginning with the night of Aug 03rd, and proceeding

until Aug 11th. Each spectrum corresponds to one of the long runs in table 4.12,

except for the 37th in the early morning of Aug 11th, which was left out in order

to fit all figures in six pages. It is important to note that Kaimal’s curve (2.72)
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together with Moraes and Epstein’s (1987) model for f0,θθ and f0,qq imply that

Sθ,θ

θ2∗
=
Sq,q

q2∗
⇒ φH = φE (5.15)

Clearly, this does not happen on Aug 03rd. A check of field conditions (Fritschen

et al., 1993; Brutsaert, 1993, personnal communication) shows that it rained

about 6 mm during the day on Aug 03rd, and that the sky was overcast through-

out this day. Indeed, nighttime evaporation was very strong, as can be seen in

table 4.12. The atmosphere was probably disturbed by the passage of a front

which caused the rain, and advection of humidity cannot be overruled. For the

remaining nights, however, the normalized temperature and humidity spectra are

remarkably similar.

The plots show two straight lines, with slopes −5/3 and −1. The −1 slope

is predicted in Kader and Yaglom (1991) and Kader (1993) for the low-frequency

range of the spectrum by means of dimensional analysis, and this is in fact

observed for all spectra during Aug 03rd, during which near-neutral conditions

prevailed. The more stable runs, however, seem to follow closer the 0 slope

which is predicted in Kaimal’s (1973) curve (2.72-a). This is probably due to

the different behavior of turbulence under stable and unstable conditions. Thus,

under near-neutral and unstable conditions, z (or a multiple thereof) is a natural

length scale in the production range (low frequencies, or wavenumbers), so that

Kader argued that spectra should scale according to Sa,a ∼ (kz)−1. Kader’s anal-

ysis, however, probably does not hold under stable conditions where z ceases to

be a valid length scale due to the damping of turbulence by negative buoancy; in
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this last case we would then have Sa,a ∼ const as predicted (without justification)

by Kaimal’s curves (the low-frequency behavior of Kaimal’s curves seems to have

been proposed on the purely empirical basis that it fit the data at hand).
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Figure 5.1 – Reduced spectral densities Sa,a/a
2
∗, a = θ, q on Aug 03.
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Figure 5.2 – Reduced spectral densities Sa,a/a
2
∗, a = θ, q on Aug 03 and 06.
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Figure 5.3 – Reduced spectral densities Sa,a/a
2
∗, a = θ, q on Aug 06 (cont.).
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Figure 5.4 – Reduced spectral densities Sa,a/a
2
∗, a = θ, q on Aug 07, 08 and 10.
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Figure 5.5 – Reduced spectral densities Sa,a/a
2
∗, a = θ, q on Aug 10 (cont.) and

11.
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Figure 5.6 – Reduced spectral densities Sa,a/a
2
∗, a = θ, q on Aug 11 (cont.).
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5.3 Cospectra with vertical velocity

The cospectra Sc
w,θ and Sc

w,q normalized by u∗θ∗ and u∗q∗are shown next,

on figures 5.7-5.12, in the same order as that of spectra. Again, we can use

Kaimal’s curve (2.72-b) (this time for the dimensionless cospectra) together with

the extension of Moraes and Epstein’s (1987) model to f0,wθ and f0,wq developed

in Chapter 2, to show that

Sw,θ

u∗θ∗
=
Sw,q

u∗q∗
⇒ φH = φE (5.16)

under the validity of MOS theory. Cospectra with vertical velocity have been used

by Lang et al. (1983a) and Ohtaki (1985) to assess the similarity between different

scalars (water vapor and temperature, in the first case; CO2 and temperature, in

the second), without the connection made above, however, between them and the

similarity functions φF . Not surprisingly, the same pattern repeats itself, with

the night of Aug 03rd showing strong dissimilarity between the cospectra with

w, but none of the others. The plots also contain a straight line with a slope of

−7/3, which is the well-known Wyngaard and Coté’s (1972) prediction for the

inertial-subrange behavior of cospectra with w, discussed in Chapter 2.
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Figure 5.7 – Reduced cospectral densities Sw,a/(u∗a∗), a = θ, q on Aug 03.



122

w; q

w; �

Night of Aug 03 at 03:30 am

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

10

2

10

1

10

0

10

�1

10

�2

10

�3

10

�4

w; q

w; �

Night of Aug 03 at 04:30 am

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

10

2

10

1

10

0

10

�1

10

�2

10

�3

10

�4

w; q

w; �

Night of Aug 03 at 05:30 am

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

10

2

10

1

10

0

10

�1

10

�2

10

�3

10

�4

w; q

w; �

Night of Aug 03 at 06:30 am

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

10

2

10

1

10

0

10

�1

10

�2

10

�3

10

�4

w; q

w; �

Night of Aug 06 at 20:30

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

10

2

10

1

10

0

10

�1

10

�2

10

�3

10

�4

w; q

w; �

Night of Aug 06 at 21:30

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

10

2

10

1

10

0

10

�1

10

�2

10

�3

10

�4

Figure 5.8 – Reduced cospectral densities Sw,a/(u∗a∗), a = θ, q on Aug 03 and

06.
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Figure 5.9 – Reduced cospectral densities Sw,a/(u∗a∗), a = θ, q on Aug 06

(cont.).
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Figure 5.10 – Reduced cospectral densities Sw,a/(u∗a∗), a = θ, q on Aug 07, 08

and 10.
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Figure 5.11 – Reduced cospectral densities Sw,a/(u∗a∗), a = θ, q on Aug 10

(cont.) and 11.
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Figure 5.12 – Reduced cospectral densities Sw,a/(u∗a∗), a = θ, q on Aug 11

(cont.).
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5.4 Coherence and Phase between temperature and hu-

midity

It should be possible to obtain a strong indication of the similarity between

θ′ and q′ by looking at their cross-spectral properties alone. If θ′ and q′ are

perfectly anti-correlated in stable conditions, then Sq
θ,q ≡ 0, ϑθ,q ≡ −180 ◦ and

Γθ,q ≡ 1 according to the predictions of Wyngaard et al. (1978) (equation (2.59-

c)), Hill (1988b) and Chapter 3.

We show coherence and phase functions side by side for each long run

on figures 5.13-5.24, in the usual order, except that now there are only three

long runs per page. The computed coherence falls off after n = 0.1 Hz in all

cases, whereas the theoretical prediction of Wyngaard et al. (1978) is for a

“flat” coherence in the inertial subrange. Such a fall-off in the temperature-

humidity coherence has also been observed by Priestley and Hill (1985); they

attributed it to spatial sensor separation. Of course, in order to establish this

fact, it would be best to calculate the coherence between a scalar and itself at

a certain distance. This is exactly the case reported by Moncrieff et al. (1993),

in an intercomparison of eddy correlation measurements of CO2 flux by different

instruments. They plotted the coherence between the CO2 traces measured by

2 instruments (open-path, fast response analyzers, sampled at 20 Hz) placed

approximately 40 cm apart in the cross-wind direction. The result is exactly as

any of the 36 plots of Γθ,q shown here, and leaves little doubt about the fact that

the observed fall-off is indeed due to spatial separation. If it had been possible
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to measure θ′ and q′ at the same point in space, we would have obtained Γθ,q ≈ 1

throughout the frequency range, except possibly for the night of Aug 03rd.

This observed fall-off seems to hinder the ability of the coherence function

to spot the similarity between θ′ and q. The phase function fares better: it

shows a “bump” in the higher frequencies during the night of Aug 03rd which

is different from the behavior in the remaining cases, where ϑθ,q “falls” to ±90 ◦

(no correlation) in a random way. It is not clear, however, how to explain this

behavior.
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Figure 5.13 – Coherence Γθ,q and Phase ϑθ,q on Aug 03.
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Figure 5.14 – Coherence Γθ,q and Phase ϑθ,q on Aug 03 (cont.).



131

Night of Aug 03 at 03:30 am

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

1

0.8

0.6

0.4

0.2

0

Night of Aug 03 at 03:30 am

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

180

135

90

45

0

-45

-90

-135

-180

Night of Aug 03 at 04:30 am

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

1

0.8

0.6

0.4

0.2

0

Night of Aug 03 at 04:30 am

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

180

135

90

45

0

-45

-90

-135

-180

Night of Aug 03 at 05:30 am

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

1

0.8

0.6

0.4

0.2

0

Night of Aug 03 at 05:30 am

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

180

135

90

45

0

-45

-90

-135

-180

Figure 5.15 – Coherence Γθ,q and Phase ϑθ,q on Aug 03 (cont.).
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Figure 5.16 – Coherence Γθ,q and Phase ϑθ,q on Aug 03 (cont.) and Aug 06.
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Figure 5.17 – Coherence Γθ,q and Phase ϑθ,q on Aug 06 (cont.).
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Figure 5.18 – Coherence Γθ,q and Phase ϑθ,q on Aug 06 (cont.).
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Figure 5.19 – Coherence Γθ,q and Phase ϑθ,q on Aug 07 and Aug 08.
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Figure 5.20 – Coherence Γθ,q and Phase ϑθ,q on Aug 10.
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Figure 5.21 – Coherence Γθ,q and Phase ϑθ,q on Aug 10 (cont.) and Aug 11.
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Night of Aug 11 at 21:30
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Figure 5.22 – Coherence Γθ,q and Phase ϑθ,q on Aug 11 (cont.).



139
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Figure 5.23 – Coherence Γθ,q and Phase ϑθ,q on Aug 11 (cont.).
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Night of Aug 11 at 03:30 am
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n=Hz

10

1

10

0

10

�1

10

�2

10

�3

1

0.8

0.6

0.4

0.2

0

Night of Aug 11 at 04:30 am

n=Hz

10

1

10

0

10

�1

10

�2

10

�3

180

135

90

45

0

-45

-90

-135

-180
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Figure 5.24 – Coherence Γθ,q and Phase ϑθ,q on Aug 11 (cont.).
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5.5 Higher-order cospectra

Remember that in Chapter 2 the Kolmogorov-Corrsin behavior of scalars

in the inertial subrange was extended to the cospectrum Sa,aa, with the prediction

that Sa,aa ∼ k−2. This prediction is confirmed in Figures 5.25-5.30, where Sθ,θθ

and Sq,qq are plotted in the range of 0.1 to 10 Hz. The humidity data seem

to perform poorer in the estimation of higher-order statistics, as was already

hinted with the plots of spectra; there are extensive regions of “missing” data,

i.e.: regions with the “wrong” cospectral density sign. The straight lines in the

figures have a slope of −2.
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Figure 5.25 – Cospectra Sa,aa/a
3
∗, a = θ, q on Aug 03rd.
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Figure 5.26 – Cospectra Sa,aa/a
3
∗, a = θ, q on Aug 03rd (cont.) and Aug 06
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Figure 5.27 – Cospectra Sa,aa/a
3
∗, a = θ, q on Aug 06 (cont.).
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Figure 5.28 – Cospectra Sa,aa/a
3
∗, a = θ, q on Aug 07, 08 and 10.
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Figure 5.29 – Cospectra Sa,aa/a
3
∗, a = θ, q on Aug 10 (cont.) and 11.
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Figure 5.30 – Cospectra Sa,aa/a
3
∗, a = θ, q on Aug 11 (cont.).
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5.6 Closure

An extensive spectral analysis of quantities involving temperature and

humidity was performed. In all analyses, the first night (Aug 03rd) shows un-

equivocal signs of dissimilarity between temperature and humidity. Because it

had rained during the same day, and the atmosphere was disturbed with the

passage of a frontal system causing the rain, it is possible that MOS conditions

did hot hold for this night. After that, no more rain fell and a progressive drying

of the soil took place. During this period, temperature and humidity show a

remarkable degree of similarity.

We investigated the low-frequency behavior of the scalar spectra; they

seem to follow Kader’s (1993) −1 law only for near-neutral conditions. It is

hypothesized that under more stable conditions the lower-frequency regions no

longer scale with z (because of z-less stratification), but rather tend to show the

behavior predicted empirically by Kaimal’s (1973) curves (slope 0).

Coherence between θ′ and q′ is also admirably close to the theoretical value

of +1 up to 0.1 Hz, decaying at higher frequencies due to sensor separation. This

fact has not been emphasized enough in the literature (only Wesely and Hicks

(1975) and Priestley and Hill (1985) seem to have given it its due importance),

and can elicit some questioning. For instance, it is usually the temperature sen-

sor which is placed closest to the vertical temperature sensor, with the humidity

sensor some distance (a few decimeters, typically) apart in the cross-wind di-

rection. Arguably, this arrangement may lead to underestimation of the water
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vapor flux in the high-frequency end of the w, q cospectrum. Curiously, there

is no indication in the cospectra with w of any differences between θ and q in

the high-frequency range: both show the expected −7/3 slope. Possibly, this is

caused by the inherently higher frequency of the vertical velocity fluctuations.

At any rate, this separation effect precludes the use of the coherence function

itself to spot possible dissimilarities such as those observed on the night of Aug

03rd; they can be disclosed, however, by the phase function.

We concluded by showing how higher-order spectra, in this case the Sa,aa

cospectra, also have a power-law behavior in the inertial subrange: the predicted

−2 slope is indeed observed over two decades, particularly well with the temper-

ature data.



Chapter 6

RADIATION AND TURBULENCE

IN THE STABLE BOUNDARY LAYER

In the previous chapters, it was shown that under conditions of near-

stationarity and no advection, radiative effects are the only physical source of

dissimilarity between water vapor and temperature, insofar as phase changes

(i.e., condensation of water vapor) do not take place. Given the near-perfect

anti-correlation between θ′ and q′ observed in the data sets analyzed in Chapters

4 and 5, in agreement with the analysis of the temperature and humidity variance

and covariance budgets (3.37) performed in Chapter 3, which neglects radiation

altogether, one is led to expect radiative effects to be relatively unimportant close

to the surface even in nighttime conditions. This is in essence the conclusion to be

reached in this chapter. We will also show, however, that it is possible to estimate

how some surface-layer similarity functions change in the presence of radiation,

and by how much. In fact, dimensionless spectral equations can be formulated

which contain two new independent dimensionless variables in addition to Monin-

Obukhov’s parameter ζ. These new parameters govern the relative importance

of the radiative effects on the temperature spectrum.

150
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6.1 Modeling the interaction of radiation and turbulence

in the atmosphere

The inclusion of radiative terms in the turbulent budgets (2.9) affects the

temperature variance (i = j = θ), and the temperature-humidity covariance

(i = θ, j = q) budgets, but not the budget of humidity variance (i = j = q).

Thus, if radiation plays an important role in stable turbulence, it is bound to

create dissimilarity between temperature and humidity.

The importance of radiative effects on the mean temperature field has

long been recognized, and is usually included in models of the nocturnal bound-

ary layer. More sophisticated, second-order closure models however must also

include the temperature variance budget, and there the effect of radiation in the

dissipation of temperature fluctuations is often missing (Wyngaard, 1975; Brost

and Wyngaard, 1978; Garratt and Brost, 1982; Nieuwstadt, 1984). Two-point

spectral models can significantly help to understand the mechanisms of inertial

transfer and dissipation of velocity and temperature variance in the atmospheric

boundary layer, as has been shown by Straka and Fiedler (1977) and Claussen

(1985a) without the inclusion of radiative effects, and Coantic and Simonin (1984)

with radiation included. It has also been suggested that such models could be

useful for the parameterization of sub-grid scale processes in large-eddy simu-

lations (Chollet and Lesieur, 1981); thus it is very likely that spectral models

can contribute to improved closures which better describe the physical processes

involved.



152

Townsend (1958) seems to have been the first to analyze explicitly the

interaction of radiation and turbulence in the atmosphere. He was basically

interested in phenomena ocurring at considerable heights, 70 − 100 Km above

sea-level. Townsend modeled the radiative dissipation term in the temperature

budget as a “first-order” reaction, i.e., he took it to be proportional to θ′θ′ ,

and obtained an expression for the limiting flux Richardson number under which

turbulence can be maintained. This modeling is strictly valid only at length

scales small compared to the distance over which radiation of a given wavelength

is effectively absorbed by the atmosphere (Townsend, 1958; Coantic and Simonin,

1984).

Brutsaert (1972) used Townsend’s theoretical framework to analyze, for

the first time, the interaction of radiation and turbulence in the atmospheric

boundary layer. He too studied the critical values of the flux Richardson number

for the maintenance of turbulence and its dependence on radiation, but did the

whole analysis with turbulence and radiative models appropriate to the atmo-

spheric boundary layer, instead of the much higher regions studied by Townsend.

Spiegel (1957) had adopted a different approach to that of Townsend or

Brutsaert to study the decay of temperature fluctuations in a stellar atmosphere.

He studied solutions to the equation for the fluctuating temperature in the form

of complex exponentials exp( i k · x), and introduced a “spectral radiative dis-

sipation function” (the term appeared much later, with Coantic and Simonin

(1984)) which gave the intensity of the damping of the temperature fluctuations

at each radiative wavelength λ and wavenumber k. Although the works of Spiegel
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and Townsend could have been related (Townsend works with the temperature

covariance θ′θ′′(x′′ − x′) between two points in space, which can be related to

the temperature spectrum), Townsend seems to have been unaware of Spiegel’s

work.

Goody (1964, Chapter 9) took up the subject of intereaction between

radiation and a fluid in motion; he generalized the definition of the spectral

radiative dissipation function to account for the effect of the whole wavelength

spectrum, showing that it could be split into three main regions (weak-line,

strong-line and the continuum) where it behaves as k0, k1 and k2 respectively.

Simonin, Coantic and Shertzer (1981) rederived the temperature spec-

tral budgets and the spectral dissipation function by Fourier-transforming the

equations for homogenenous and isotropic turbulence, analyzing the quantita-

tive effect of radiation on the temperature spectrum. Schertzer and Simonin

(1981), still in the framework of isotropic turbulence, observed the appearance of

an “inertial-radiative” range with a slope steeper than −3; the appearance of this

range however was predicted for values of a dimensionless radiative parameter

ζR less than 1. They pointed out that such a behavior was unlikely in the case

of the Earth’s atmosphere. They also proposed a dimensionless form (but not a

formula) for the spectral radiative dissipation function.

Coantic and Simonin (1984), in a landmark paper, applied those earlier

results to the Earth’s planetary boundary layer; both isotropic and non-isotropic

spectral temperature budgets were used, and a very thorough analysis of radia-

tive effects was performed, with the inclusion of the continuum absorption, CO2
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effects, and scattering by water vapor droplets. Some of their conclusions include

the fact that the absolute water vapor density ρv is relatively unimportant; the

turbulence kinetic energy e′/2, on the other hand, plays an important role, with

radiative effects becoming important for sufficiently small (< 2 × 10−2m2 s−2)

values of it. In their analysis of non-isotropic turbulence, they used Kaimal’s

(1973) curve for near-neutral conditions as an initial value in the calculation of

the temperature spectrum, and production was calculated with a near-neutral

dimensionless temperature gradient φH(0).

Clearly, it is highly desirable that the statements about the relative im-

portance of radiation be framed in terms of dimensionless quantities. It is also

important to extend the analysis into a larger range of stable stratification cond-

tions, farther from neutral. In this chapter, we introduce the relevant physics,

and its relation to the spectral budgets. By making the equations dimensionless,

the similarity parameters which include the radiative effects are found. They

are then applied in a dimensionless formulation for the spectral radiative func-

tion which is considerably simpler than the extensive numerical integration over

the absorption bands of H2O (the main absorber) that has been used ever since

Goody’s (1964) work. This allows a simple spectral model (Claussen, 1985a)

to be used and solved analytically for stability and radiative dimensionless pa-

rameters. Finally, this solution can be used to assess the relative importance of

radiation in terms of its effect on the dimensionless temperature spectra and the

dimensionless statistic φθθ.
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6.2 Physical background

Given radiation of a certain wavelength λ, the radiative wavenumber µ is

λ−1. Consider a certain direction in space defined by the unit vector s. Let dA⊥

be an element of area perpendicular to s, dω an element of solid angle around s

and dt an element of time during which the amount of electromagnetic energy

crossing dA⊥ is dEµ. The intensity of radiation at radiative wavenumber µ is

(Goody and Yung, 1989 pp. 16–17)

Iµ(s) ≡
dEµ

dA⊥dtdω
. (6.1)

Schwarzschild’s equation for absorption is

dIµ
ds

= −ρaβµ(Iµ − Jµ) (6.2)

where d/ds is the total derivative in the direction of s, ρa is the density of the

absorbing material, βµ is the absorption coefficient at wavenumber µ, and Jµ is

the thermal emission. We will assume that water vapor is the main absorbant,

i.e.: ρa = ρv (CO2 effects, which are much smaller, will not be included) and that

the atmosphere is in local thermodynamic equilibrium, such that

Jµ = Bµ =
2hc2µ3

exp(hcµ
kT

)− 1
(6.3)

where Bµ is Planck’s Blackbody Function, h = 6.6262 × 10−34 J s is Planck’s

constant, c = 2.998 × 108 ms−1 is the velocity of light in the vacuum and k =

1.381× 10−23 JK−1 is Boltzmann’s constant. Then (6.2) becomes

dIµ
ds

= −ρvβµ(Iµ −Bµ) . (6.4)
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The transmission of electromagnetic radiation over a distance r through

an absorbing medium of (water vapor) density ρv is

Tµ ≡ exp(−βµρvr) (6.5)

and the mean transmission over wavenumber range (“band”) ∆µ is

T µ ≡
1

∆µ

∫

∆µ

exp(−βµρvr) dµ . (6.6)

The main reason for introducing a mean transmission is that βµ varies rapidly

with frequency. Thus, the radiative wavenumber range is usually divided into

absorption bands with a typical width of ∆µ = 2,500 m−1, each containing

thousands of individual lines. Each line in turn gives rise to a βµ distribution

around its center µ. (Houghton, 1986 p. 41; Goody and Yung, 1989 p. 125).

Houghton (1986) gives tables of the transmission function for water vapor

for 105 bands, in terms of Goody’s band model using the Malkmus expression

(Tjemkes and Duynkerke, 1988):

T∆µj
= exp

{
−

2b2j
aj∆µj

[(
1 +

a2jρvr

b2j

)1/2

− 1

]}
(6.7)

where for each band j, ∆µj is the width of the band, and aj and bj are constants.

The bands are unevenly distributed in the 0− 1,110,000 m−1 range.

In addition to the H2O absorption bands, there is a region of continuous

absorption, i.e.: a region where βµ is a smooth function of wavenumber µ, in the

λ = 8− 12µm range, which can be modeled by (Roberts, Selby and Biberman,

1976)

βµ = [a+ becµ] exp

[
1800

(
1K

T
− 1

296

)]
NAρvRvT

Mv

(6.8)
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where a = 1.2337× 10−31 kg−1m−1s2, b = 1.6482× 10−28 kg−1m−1s2, c = −7.87×

10−5m, T is absolute temperature, NA = 6.02 × 1023 is Avogadro’s number,

Rv = 461.51 J kg−1K−1 is the gas constant for water vapor and Mv = 18.015 ×

10−3kg−1mol−1 is the molecular mass of water vapor.

Given the small values of βµ, absorption in the continuum range can only

become significant for extremely long distances (see (6.5)), of the order of 1 km

or more. On the other hand, the turbulence integral scale close to the surface

is of the order of the distance to the surface, or 2.5 m in our case. Due to this

fact, the continuum absorption will not be included in the simplified approach

presented in this chapter.

6.3 Radiative Divergence

Radiation acts like a source or sink in the temperature equation; if R

[W ·m−2] is the (long-wave) radiative flux density vector, the radiative heating

or cooling will then depend on its divergence

∇ ·R =
∂ Rk

∂xk
=

∫ ∞

µ=0

∫ 4π

ω=0

dIµ
ds

dω dµ . (6.9)

Using (6.4) and assuming that ρv, Iµ and Bµ can be decomposed into a

mean and a fluctuating part,

∂ Rk

∂xk
=
∂ Rk

∂xk
+
∂ R′

k

∂xk

=

∫ ∞

µ=0

∫ 4π

ω=0

−βµ(ρv + ρ′v)(Iµ + I ′µ −Bµ −B′
µ) dω dµ

=

∫ ∞

µ=0

∫ 4π

ω=0

−βµρv(Iµ −Bµ) dω dµ
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+

∫ ∞

µ=0

∫ 4π

ω=0

−βµ
[
ρv(I

′
µ −B′

µ) + ρ′v(Iµ −Bµ)
]
dω dµ (6.10)

where we define ∂Rk/∂xk to be given by the first integral in the right-hand side of

(6.10), and products of fluctuations are neglected. We are also assuming that, to

first order, turbulent fluctuations of temperature, humidity and pressure do not

affect the value of βµ. Coantic and Simonin (1984) have shown that the water

vapor density fluctuations ρ′v play a relatively unimportant part in ∂R′
k/∂xk;

therefore, considering the effects of temperature fluctuations only, and using

B′
µ ≈

dBµ

dT
θ′ (6.11)

we finally get

∂ R′
k

∂xk
≈
∫ ∞

µ=0

∫ 4π

ω=0

−βµρv(I ′µ −
dBµ

dT
θ′) dω dµ . (6.12)

6.4 Spectral budgets and the effect of radiation

In Chapter 2, the spectral budgets for homogeneous turbulence and steady

state were obtained. Here, as opposed to previous chapters, we do not include

the water vapor spectral behavior directly. Instead, we make the (reasonable)

assumption that buoancy effects are due to temperature fluctuations alone. In

fact, since the only difference between the humidity and the temperature variance

budget equations is in the radiative terms appearing in the latter, it will be

possible to assess those differences by comparing the results obtained with the

case where radiation is absent, which is assumed to be representative of humidity.
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We will use the budgets (2.56) for twice the turbulence kinetic energy

spectrum Ee and for the temperature spectrum Eθ,θ (Lumley and Panofsky, 1964;

Hinze, 1975; Coantic and Simonin, 1984; Claussen, 1985a):

2
∂ u

∂z
Ew,u −

∂ u

∂z
Ue + Te −

2g

θ
Ew,θ + 2νuk

2Ee = 0 (6.13-a)

2
∂ θ

∂z
Ew,θ −

∂ u

∂z
Uθ,θ + Tθ,θ + 2νθk

2Eθ,θ + 2N(k)Eθ,θ = 0 (6.13-b)

where

N(k) =
1

ρcp
F
{
∂ R′

k

∂xk

}
1

θ̂

=
4π

ρcp

∫ ∞

µ=0

ρvβµ
dBµ

dT

[
1−

βµρv
k

arctan
k

βµρv

]
dµ

≈ 4π

ρcp

NB∑

j=1

dBµj

dT
∆µj

[
T

′

µ(0) +

∫ ∞

0

T
′′
(r)

k

sin kr

r
dr

]
(6.14)

is the spectral radiative dissipation function derived in Appendix B, and NB is

the number of water vapor bands.

In order to study the joint effects of stability and radiation on the tem-

perature spectrum, equations (6.13-a) and (6.13-b) must be solved together. We

will adopt a Claussen (1985a)-like type of closure for the fluctuating rate-of-strain

transfer terms Te and Tθ,θ and the cospectra Ew,u and Ew,θ. This will allow Ee

and Eθ,θ to be calculated directly as a function of both radiation and stability

parameters. This approach is different from Coantic and Simonin’s (1984), who

solved for Eθ,θ assuming an initial spectral shape based on Kaimal’s (1973) spec-

tral curves, and a neutral temperature gradient, and did not utilize the equation
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for Ee. The adopted closure for (6.13) is

Te =
1

αe

d

dk

[
ǫ1/3e k2/3Ee

]
(6.15-a)

Tθ,θ =
1

αθθ

d

dk

[
ǫ1/3e k2/3Eθ,θ

]
(6.15-b)

2Ew,u = −∂ u
∂z

cIǫ
−1/3
e k−2/3Ee (6.15-c)

2Ew,θ = −
∂ θ

∂z
cIIǫ

−1/3
e k−2/3Ee (6.15-d)

Ue = Uθ,θ = 0 , (6.15-e)

together with the integral constraints for the rates of dissipation of turbulence

kinetic energy ǫe and temperature variance ǫTθ

ǫe =

∫ ∞

0

νuk
2Ee dk (6.16-a)

ǫTθ = ǫθθ + ǫRθ =

∫ ∞

0

νuk
2Eθ,θ dk +

∫ ∞

0

N(k)Eθ,θ dk (6.16-b)

where ǫTθ indicates total (molecular (ν) plus radiative) dissipation. Even though

the end result is equivalent, notice that the closure represented by the above

equations is somewhat different from Claussen’s, in that it is being explicitly

assumed here that the mean rate-of-strain transfer terms Ue and Uθ,θ are zero,

whereas Claussen “lumps” them with Ew,u and Ew,θ. In this case, the closures

(6.15-c) and (6.15-d) for the cospectra have the same form as that proposed by

Wyngaard and Coté (1972) for one-dimensional cospectra in the inertial sub-

range, which makes the set of equations (6.15) physically consistent. Indeed,

Hinze (1975 p. 341) shows that Ue is small at high wavenumbers compared to

the other terms, whereas Coantic and Simonin (1984) assumed the same for Uθ,θ,

neglecting it. Also notice that this term is identically zero in the case of isotropic



161

turbulence. Although atmospheric turbulence is not isotropic (given the exis-

tence of vertical fluxes) it is often necessary to assume the validity of isotropic

relations between one- and three-dimensional spectra when comparisons with

one-dimensional measured spectra are made.

Equations (6.15) represent one of the simplest ways to close the spectral

budgets, known as a Corrsin-Pao closure (Corrsin, 1964; Pao, 1965) They are an

example of a “local” closure in which the spectral transfer terms are modeled as

derivatives of a spectral flux (Hinze, 1975 p. 249). Although more sophisticated

schemes have been available for a long time (e.g. the Eddy-Damped Quasi-

Normal Markovian (EDQNM) approximation and the Test Field Model (TFM)

compared by Herring et al. (1982)), their use in atmospheric modelling has been

rare. One reason is that in the surface layer the scales of turbulent motion (the

eddy sizes) are limited by the distance to the surface, which is often only a few

meters when micrometerological towers are utilized for measurements, and then

local closures perform satisfactorily, as for that matter does MOS Theory. Thus,

Claussen (1985a) was able to reproduce qualitatively the main features of spectral

dependence on stability (the well-known shift towards higher wavenumbers with

increasing stability) using a closure effectively equivalent to (6.15); Claussen

(1985b) used the same model to estimate the MOS φF functions and Moraes and

Goedert (1988), using the same approach plus the isotropic relations between one-

and three-dimensional spectra were able to obtain a fair reproduction of Kaimal’s

(1973) curves. Coantic and Simonin (1984) also obtained essentially equivalent

results when comparing a closure very similar to (6.15-b), due to Hill (1978),
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and an EDQNM modeling, for isotropic turbulence. Equation (6.15) may yield a

somewhat simplified shape of the scalar spectrum since it is unable to reproduce

a “bump” that has been observed experimentally at high wavenumbers in the

end of the inertial subrange (Champagne et al., 1977), with a tendency towards

a viscous-convective subrange, and which has been the object of Hill’s (1978)

attention. Yet Claussen’s work has shown that the model’s overall performance

in the context of near-surface atmospheric flows is quite reasonable, and we retain

it here for its analytical simplicity.

The next steps in solving for the temperature spectrum involve obtain-

ing a convenient dimensionless formulation for the radiative spectral dissipation

function, and rewriting the spectral budgets in dimensionless form as well. In

the next two sections, these issues are tackled.

6.5 An analytical approximation for the spectral radiative

dissipation function

Calculation of the function N(k) in (6.14) involves the evaluation of NB

improper integrals numerically for each k, so that a considerable numerical effort

is involved. It is highly desirable to obtain an analytical approximation to the

function N(k) depending on just a few parameters instead of the 3NB constants

aj, bj and ∆µj present in (6.14), so that the solution of (6.13) may also be

analytical.



163

The main features of N(k) were established by Goody (1964 figure 9.3

p. 351). In the region where the continuum absorption is dominant (very small

k), N(k) ∼ k2; this behavior will not be sought, given the small importance of

continuum absorption in the scales of interest for turbulence. In the strong-line

region, which is valid over a wide range of k – including the smallest scales of

interest in turbulence – N(k) ∼ k; finally, in the weak-line region, N(k) ↑ N∞ as

k ↑ ∞, with

N∞ =
4π

ρcp

∫ ∞

µ=0

dBµ

dT
ρvβµ dµ . (6.17)

This can also be written as

N∞ =
4π

ρcp

4σθ
3

π
ρvβP (6.18)

where

βP ≡
∫∞

µ=0

dBµ

dT
βµ dµ∫∞

µ=0
dBµ

dT
dµ

=

∫∞

µ=0

dBµ

dT
βµ dµ

4σθ
3
/π

(6.19)

is Planck’s coefficient and σ = 5.67 × 10−8Wm−2K−4 is the Stefan-Boltzmann

constant. Planck’s coefficient can be calculated much more easily than N(k) it-

self. Since the derivative dBµ/dT is approximately constant over each absorption

band ∆µj (see Appendix B), it is possible to write

βP ≈

NB∑
j=1

dBµj

dT

∫
∆µj

βµ dµ

4σθ
3
/π

(6.20)

and the integral above turns out to be obtainable in terms of average transmis-

sions. In fact, equating (6.6) and (6.7) and considering a Taylor expansion on
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x = ρvr of both sides up to the first term only, one gets

1

∆µj

∫

∆µj

(
1− ρvβµr

)
dµ = 1−

aj
∆µj

ρvr

so that
∫

∆µj

βµ dµ = aj , (6.21)

whence

βP ≈

NB∑
j=1

dBµj

dT
aj

4σθ
3
/π

. (6.22)

Thus, Planck’s coefficient becomes just a weighted sum of the a′js in Houghton’s

(1986) tables. As defined here (independently of the absorbing gas density ρv),

it is a very mild function of temperature only. Typical values for different tem-

peratures in the range of those expected in the Earth’s atmosphere, calculated

with (6.22), are shown in Table 6.1 .

We seek an approximation for N(k) such that N(k) ∼ k as k ↓ 0 and

N(k) ↑ N∞ as k ↑ ∞, in dimensionless form. Let

N(k)

N∞

= F

(
k

βPρv

)
= F

(
κzk

κzβPρv

)
= F

(
η

ηP

)
(6.23)

(Schertzer and Simonin, 1981), where η = κzk is a dimensionless wavenumber

that will appear naturally in the spectral budget equations in dimensionless form,

κ = 0.4 is von Karman’s constant, z is height above ground and ηP = κzβP ρv

is a dimensionless Planck (wave) number which effectively defines the order of

magnitude of scales at which radiative dissipative effects begin to be important.
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Table 6.1 – Plancks’ coefficient as a function of temperature

T /K βP / kg
−1m2

270.0 4.3141× 101

275.0 4.2564× 101

280.0 4.2038× 101

285.0 4.1558× 101

290.0 4.1118× 101

295.0 4.0715× 101

300.0 4.0344× 101

305.0 4.0000× 101

310.0 3.9682× 101

A good approximation to N(k) with the correct behavior in the strong- and

weak-line regions is

F (x) =
x+ x5/4

[1 + x5/12]3
(6.24-a)

x =
η

20ηP
. (6.24-b)

Figure 6.1 shows the function N(k) computed at θ = 290K and ρv = 1.43×10−2,

ρv = 0.71 × 10−2, ρv = 1.43 × 10−3 kgm−3 by means of (6.14) with numerical

integration and use of Houghton’s tables, and by the approximations (6.23) and

(6.24), in a log-linear plot. Figure 6.2 is the same in a log-log plot, so that both



166

�

v

= 1:43� 10

�3

�

v

= 0:71� 10

�2

�

v

= 1:43� 10

�2

k =m

�1

N

(

k

)

=

s

�

1

10

6

10

5

10

4

10

3

10

2

10

1

10

0

10

�1

10

�2

10

�3

10

�4

10

�5

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

Figure 6.1 – N(k) computed with equations (6.14) for θ = 290K and ρv =

1.43×10−2 (diamonds), ρv = 0.71×10−2 (crosses) and ρv = 1.43×10−3 (squares)

kgm−3 and by equation (6.24) (continuous lines)

the overall asymptotic behavior and the goodness of fit of the approximation can

be observed.

6.6 Dimensionless spectral budget equations

The turbulent spectral budgets (6.13) can be made dimensionless in a

straightforward manner by properly multiplying and dividing by turbulent scales.

For (6.13-a), we multiply by κzk and divide by u3∗; for (6.13-b), we multiply by
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Figure 6.2 – Same as figure 6.24, with a log-log scale

κzk and divide by u∗θ
2
∗. The result is then

2
κz

u∗

∂ u

∂z

kEw,u

u2∗
+
κzkTe

u3∗
− 2

κgzθ∗

θu2∗

kEw,θ

u∗θ∗
+ 2

νu
κzu∗

(κzk)2
kEe

u2∗
= 0

(6.25-a)

2
κz

θ∗

∂ θ

∂z

kEw,θ

u∗θ∗
+
κzkTθ,θ

u∗θ
2
∗

+ 2
νθ
κzu∗

(κzk)2
kEθ,θ

θ2∗
+ 2

κzN(k)

u∗

kEθ,θ

θ2∗
= 0

(6.25-b)

or

−2φτψw,u + τe + 2ζψw,θ +
2

Re∗
η2ψe = 0 (6.26-a)

−2φHψw,θ + τθ,θ +
2

Peθ∗
η2ψθ,θ +N∗ηPF (η/ηP )ψθ,θ = 0 (6.26-b)

where Re∗ and Peθ∗ are turbulent Reynolds and Péclet numbers; φτ and φH are the

dimensionless velocity and temperature gradients; ψe and ψθ,θ are dimensionless
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energy and temperature spectra; ψw,u and ψw,θ are dimensionless cospectra, τe

and τθ,θ are dimensionless transfer terms due to fluctuating rates of strain, N∗ and

ηP are dimensionless radiative parameters. These parameters, most of which were

already introduced in Chapter 2, are listed in equation (6.27) below, with their

definitions on the left indicated by an identity sign (≡) and the non-dimensional

closures appearing on the right indicated by an equal sign, when appropriate.

κzu∗
νu
≡ Re∗ (6.27-a)

κzu∗
νt
≡ Peθ∗ (6.27-b)

κz

u∗

∂ u

∂z
≡ φτ (6.27-c)

κz

θ∗

∂ θ

∂z
≡ φH (6.27-d)

kEe

u2∗
≡ ψe (6.27-e)

kEθ,θ

θ2∗
≡ ψθ,θ (6.27-f)

−
kEw,u

u2∗
≡ ψw,u =

1

2
φτcIφ

−1/3
ǫe η−2/3ψe (6.27-g)

−
kEθ,u

u∗θ∗
≡ ψw,θ =

1

2
φHcIIφ

−1/3
ǫe η−2/3ψe (6.27-h)

κzkTe

u3∗
≡ τe =

η

αe

d

dη

[
φ1/3
ǫe η

2/3ψe

]
(6.27-i)

κzkTθ,θ

u∗θ
2
∗

≡ τθ,θ =
η

αe

d

dη

[
φ1/3
ǫe η

2/3ψθ,θ

]
(6.27-j)

N∗ ≡
4π

ρcp

4σθ
3

πu∗
(6.27-k)

ηP ≡ κzβPρv . (6.27-l)

From the point of view of the influence of radiation on the temperature spectrum,

notice the appearance of the dimensionless parameters ηP and N∗. A quantity
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equivalent to ηP appears in Coantic and Simonin (1984) whose solutions, however,

are not presented in dimensionless terms, whereas a dimensionless parameter

related to N∗ and ηP was introduced by Schertzer and Simonin (1981) in the

context of the inertial transfer of turbulence kinetic energy, which they called ζR.

The relationship is

ζR =
[
0.04N∞(βPρv)

−2/3ǫ−1/3
e

]−1

=
[
0.04N∗η

1/3
P φ−1/3

ǫe

]−1

(6.28)

where the first equality is Schertzer and Simonin’s definition, and the second

translates it to the dimensionless parameters used in this work. Schertzer and

Simonin observed the appearance of an inertial-radiative subrange with a slope

steeper than −3, when ζR < 1.0, which is equivalent, for neutral conditions

and typical humidities in the atmosphere (φǫe = 1; ηP = 0.5), to N∗ > 4.4,

approximately. We shall see that this is an extraordinarily high value of N∗ for

the conditions prevailing in the Earth’s atmosphere, so that one is unlikely to

observe such a behavior in terrestrial temperature spectra. This is important

because the solution of (6.26) will assume the existence of a classical inertial

subrange with a slope of −5/3, as will be shown presently. It should also be

pointed out that the parameters ηP and N∗ are a more natural choice than ζR

to represent the effects of radiation; whereas ηP indicates the relative scales of

turbulence at which radiative effects begin to be important in the spectrum (see

equation (6.24)), N∗ physically represents a ratio of convective to radiative flux

changes with temperature. This is easily seen by assuming a hypothetical surface
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with temperature θ which is exchanging heat convectively at the rate

H = ρcpCHu∗(θ − θa) (6.29)

where CH is a heat transfer coefficient and θa the air temperature far from the

surface, and radiatively at

R = σθ
4

(6.30)

The ratio of the unit changes of H and R with θ will then be

∂R/∂θ

∂H/∂θ
=

4σθ
3

ρcpCHu∗
(6.31)

which is equal to N∗ times a numerical constant. On the other hand, the com-

bination N∗η
1/3
P φ

−1/3
ǫe will appear naturally in the solution for the temperature

spectrum (see equation (6.44) below), so that it can be regarded as a single

parameter controlling the shape of the spectrum.

The solution of (6.26) must obey the integral constraints that production

by mean gradients and buoancy is equal to dissipation by molecular and radiative

effects:

∫ ∞

0

(
φτψw,u − ζψw,θ

) dη
η

=

∫ ∞

0

ψe

Re∗
η dη = φǫe (6.32-a)

∫ ∞

0

φHψw,θ

dη

η
=

∫ ∞

0

ψθ,θ

Peθ∗
η dη +

∫ ∞

0

N∗ηPF (
η

20ηP
)ψθ,θ

dη

η

= φǫθθ
+ φǫRθ

= φǫTθ
(6.32-b)

We first solve for the spectrum of twice the turbulence kinetic energy, assuming

the solution to have the classical inertial subrange behavior times low- and high-

wavenumber “perturbations” fe(η) and gu(η) (Claussen, 1985a),

ψe = 2αeφ
2/3
ǫe η

−2/3fe(η)gu(η) (6.33)
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such that

lim
η↓0

fe(η) = 0 (6.34-a)

lim
η↑∞

fe(η) = 1 (6.34-b)

lim
η↓0

gu(η) = 1 (6.34-c)

lim
η↑∞

gu(η) = 0 , (6.34-d)

i.e., fe and gu will represent the falling of the spectrum in the lower and higher

wavenumbers, respectively. Using (6.33) and the closure equations in (6.27-g)

and (6.27-i), we get

(
−cIφ2

τ + cIIφHζ
)
αeφ

1/3
ǫe η

−7/3fegu +
d

dη

[
φǫefegu

]
+

2η1/3

Re∗
αeφ

2/3
ǫe fegu = 0 . (6.35)

Let

β ≡ cIφ2
τ − cIIφHζ (6.36)

then (6.35) becomes

−αeβφ
−2/3
ǫe η−7/3fegu + fe

dgu
dη

+ gu
dfe
dη

+ 2αeRe
−1
∗ φ−1/3

ǫe η1/3fegu = 0

gu(η)

[
dfe
dη
− αeβφ

−2/3
ǫe η−7/3fe

]
+ fe(η)

[
dgu
dη

+ 2αeRe
−1
∗ φ−1/3

ǫe η1/3gu

]
= 0

(6.37)

where the two brackets represent the asymptotic behavior of (6.37) respectively

as η ↓ 0 and η ↑ ∞. Letting η approach each limit and using (6.34) we are then

left with two independent differential equations for fe and gu, whose solutions

are

fe(η) = exp

[
−3
4
βαeφ

−2/3
ǫe η−4/3

]
(6.38-a)

gu(η) = exp

[
−3
2
αeRe

−1
∗ φ−1/3

ǫe η4/3
]
. (6.38-b)
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It is straighforward to check that (6.33) with (6.38) obey the constraint (6.32-a).

For the temperature spectrum, we again assume the form of the solution to be

ψθ,θ = 2αθθφ
−1/3
ǫe φǫTθ

η−2/3fe(η)gθ(η) , (6.39)

which has the classical inertial subrange behavior for a scalar plus a “low-

wavenumber” component fe and a “high-wavenumber” component gθ. Notice

the asymptotic behavior of gθ, which is the same as that of gu:

lim
η↓0

gθ(η) = 1 (6.40-a)

lim
η↑∞

gθ(η) = 0 . (6.40-b)

Notice also that we are assuming the same fe for both ψe and ψθ,θ, so that the

production term in (6.26-b) which is modeled to depend on ψe in (6.27-h), has a

common factor with the others. Using (6.39), (6.26-b) and (6.27-h) and (6.27-j),

we obtain

− (αecII)φ
2
Hφ

1/3
ǫe φ

−1
ǫTθ
η−7/3fegu +

dfe
dη
gθ + fe

dgθ
dη

+ 2αθθφ
−1/3
ǫe Peθ∗

−1
η1/3fegθ + 2αθθφ

−1/3
ǫe N∗ηPη

−5/3F

(
η

20ηP

)
fegθ = 0

(6.41)

From (6.38),

dfe
dη

= αeβφ
−2/3
ǫe η−7/3fe (6.42)

so that the equation for the temperature spectrum becomes

[
αeβφ

−2/3
ǫe gu − αecIIφ

2
Hφ

1/3
ǫe φ

−1
ǫTθ
gθ
]
η−7/3+

dgθ
dη

+ 2

[
αθθφ

−1/3
ǫe

(
Peθ∗

−1
η1/3 +N∗ηPη

−5/3F

(
η

20ηP

))]
gθ = 0 (6.43)
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For small values of η, gθ ≈ gu ≈ 0, whereas for large η, η−7/3 ≈ 0. We

shall also show that, except for the fact that gu is slightly different from gθ, the

term in brackets in the first line of (6.43) above is essentially zero, given the

relationship (to be established presently) between β, φǫe, φτ , φH and φǫTθ
. Thus,

(6.43) simplifies to

dgθ
dη

+ 2

[
αθθφ

−1/3
ǫe

(
Peθ∗

−1
η1/3 +N∗ηPη

−5/3F

(
η

20ηP

))]
gθ = 0 (6.44)

whose solution subject to (6.40) is

gθ = exp

[
−αθθφ

−1/3
ǫe

(
3

2
Peθ∗

−1
η−4/3 + 2N∗η

1/3
P (20)−2/3

∫ η/20ηp

0

u−5/3F (u) du

)]

(6.45)

which now completes the solution for the energy and temperature spectra. Notice

that the combination N∗η
1/3
P φ

−1/3
ǫe appears naturally in (6.45). The temperature

spectrum in particular is given by (6.39) with fe given by (6.38-a) and gθ given

by (6.45).

To obtain a solution in terms of stability ζ, Planck Number ηP and N∗,

one must first discuss the dependence of φτ , φH , φǫe and φǫTθ
on these parame-

ters; moreover, it would be convenient from the computational point of view, to

approximate the integral
∫ x

0
u−5/3F (u) du in closed form, in the same way that

was done with F (x) itself.

We shall assume, as did Coantic and Simonin (1984), that the terms

responsible for the production of turbulence are not themselves a function of
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radiative parameters. Thus, φτ = φτ (ζ) and φH = φH(ζ) only. Then, notice that

the dimensionless budgets of e′ and θ′θ′ for homogeneous turbulence read

φτ = ζ + φǫe (6.46-a)

φH = φǫTθ
=
(
φǫθθ

+ φǫRθ

)
. (6.46-b)

Under the approximation that production terms are a function of stability ζ only,

the viscous dissipation of turbulence kinetic energy is also a function only of ζ,

whereas the molecular dissipation of temperature variance φǫθθ
is supposed to

adjust to the radiative dimensionless dissipation φǫRθ
in order to match φH(ζ).

An important result obtained by Claussen (1985a) is the relation between

φH and φτ that comes out of his model, and which is preserved when radiative

terms are included. Here, it is obtained from the dimensionless equations them-

selves as follows. Using (6.27), the integral constraint (6.32) and (6.33) we can

write

∫ ∞

0

φHψw,θ

dη

η
= φǫTθ

(6.47-a)
∫ ∞

0

φ2
H

cII
2
φ−1/3
ǫe η−2/32αeφǫe

2/3η−2/3fe(η)gu(η)
dη

η
= φǫTθ

(6.47-b)

φǫecIIφ
2
H

β

∫ ∞

0

αeβφǫe
−2/3η−7/3fe(η) dη = φǫTθ

(6.47-c)

where in (6.47-c) we are making the approximation that gu(η) ≈ 1 in the η-range

close to 0 where the −7/3 exponent “concentrates” most of the integrand. The

integral in (6.47-c) is 1, whence

φǫecIIφ
2
H = βφǫTθ

using (6.36) and (6.46):
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φǫecIIφ
2
H =

(
cIφ

2
τ − cIIφHζ

)
φH

(φτ − ζ) cIIφH = cIφ
2
τ − cIIφHζ

cIIφH = cIφτ (6.48)

If there are differences between φτ and φH in stable conditions, they are certainly

small (Högström, 1988), so we set (Brutsaert, 1982)

φτ = φH = 1 + 5ζ (6.49)

In section 6.8, we will show how cI = cII can be realistically estimated, by means

of one-dimensional temperature spectra observed in the Stable Boundary Layer.

6.7 An analytical approximation for gθ

Finally, to obtain an analytical expression for gθ, one must evaluate the

integral

H(x) ≡
∫ x

0

u−5/3F (u) du ≡
∫ x

0

G(u) du =

∫ x

0

u−2/3 + u−5/12

(1 + u5/12)
3 du (6.50)

We begin by noticing that (Gradshteyn and Ryzhik, 1980 p. 292)

∫ ∞

0

xµ−1

(1 + xν)n+1 dx =
1

ν

Γ
(
µ
ν

)
Γ
(
n+ 1− µ

ν

)

Γ(n+ 1)
(6.51)

where Γ(·) is the gamma function and µ, ν and n above do not bear any physical

meaning; then,

H∞ ≡
∫ ∞

0

G(u) du

=
12

5Γ(3)

[
Γ

(
12

15

)
Γ

(
3− 12

15

)
+ Γ

(
7

5

)
Γ

(
3− 7

5

)]

= 2.4906 ≈ 5

2
(6.52)
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We now look at the asymptotic behavior of H(x). When u ↓ 0, G(u) ∼ u−2/3,

whence

x ↓ 0 ⇒ H(x) ∼ 3x1/3 (6.53)

whereas, as u ↑ ∞, G(u) ∼ u−5/3; then,

x ↑ ∞ ⇒
∫ x

0

G(u) du =

∫ ∞

0

G(u) du−
∫ ∞

x

G(u) du

≈ H∞ −
∫ ∞

x

u−5/3 du

= H∞ −
3

2
x−2/3

≈ H∞

(
1− 3

5
x−2/3

)
(6.54)

where in the last line, (6.52) was used. We will seek to approximate H(x) in the

form

H(x) ≈ H∞

6
5
x1/3 + (cx)m

[1 + (cx)n]p
(6.55)

such that np = m. Equation (6.55) has the correct asymptotic behavior as x ↓ 0,

given, again, the approximation (6.52-c). For x ↑ ∞, m, n, p and c still need to

be related in order to ensure the correct behavior predicted in (6.54). Then, we

must have

x ↑ ∞ ⇒ (cx)m

[1 + (cx)n]p
∼ 1− 3

5
x−2/3 (6.56)

Let t = x−2/3; we can then study the behavior of the function

t ↓ 0⇒ H̃(t) ≡ cm[
cn + t

3n
2

]p ∼ 1− 3

5
t (6.57)
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where the tilde indicates the asymptotic approximation. Equation (6.57) above

looks like a Taylor expression to the first term; the derivative of H̃ is

H̃ ′(t) = −
cmp

[
cn + t

3n
2

]p−1
3
2
t
3n
2
−1

[
cn + t

3n
2

]2p (6.58)

In order to have H̃ ′(0) 6= 0 and H̃ ′(0) 6= −∞, set

n = 2/3 ; (6.59-a)

then,

H̃ ′(0) = − p

c2/3
⇒ c =

(
5p

3

)3/2

(6.59-b)

which, together with

np = m (6.59-c)

reduces the number of degrees of freedom for parameter choice in (6.55) to one,

i.e., there is only one free parameter to adjust this approximation to H(x). It

turns out that m = 11/10 is an excellent choice; figure 6.3 shows the comparison

between the numerical integration of (6.50) with the approximation provided by

(6.55) with the aforementioned value for m.

6.8 Model calibration and results

In order to calibrate cI = cII , we will assume the simplest case, that of a

neutral atmosphere (ζ = 0) with no radiative effects, (N∗ = 0); then, Kaimal’s

semi-empirical curves for the dimensionless temperature spectrum can be written
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analytical approximation

numerical integration
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Figure 6.3 – Analytical approximation of H(x) with equation (6.55) (contin-

uous line) compared to numerical integration of equation (6.50-a) (diamonds)

in the form (Kaimal, 1973; Moraes and Epstein, 1987)

ψ1
θ,θ =

0.164f

f
5/3
0,θθ + 0.164f 5/3

f
2/3
0,θθφθθ (6.60)

with

f0,θθ =

(
α1
θθ

φθθ

)3/2
1

2πκ
φ−1/2
ǫe φ

3/2
H (6.61-a)

f =
n1z

u
=
k1z

2π
(6.61-b)

where α1
θθ = 0.80 is the one-dimensional Corrsin-Kolmogorov constant for the

temperature spectrum and Taylor’s frozen turbulence hypothesis is used to con-

vert from (again, one-dimensional) wavenumber k1 to frequency n in (6.61-b).
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The three-dimensional constant αθθ is related to α1
θθ in isotropic turbulence by

(Hinze, 1975 p. 299)

αθθ =
5

3
α1
θθ (6.62)

We will assume a priori that, under near-neutral conditions, the dimensionless

function φθθ is

θ′θ′

θ2∗
≡ φθθ ≈ 2.0 , (6.63)

which is in agreement with table 4.13, and the values obtained in Chapter 4.

Later on, an “actual” φθθ will be computed from the model as a function both

of stability and radiation. The temperature spectrum (6.39) is evaluated with a

guessed value of cI in (6.36) and (6.38-a) and then the one-dimensional dimen-

sionless spectrum ψ1
θ,θ is calculated by means of the isotropic relationship (Hinze,

1975, section 3.7)

ψ1
θ,θ(η1) = η1

∫ ∞

η1

ψθ,θ(η)
dη

η2
(6.64)

which is then compared to ψ1
θ,θ given by (6.60).

Figure 6.4 shows the results obtained for cI = cII = 0.15, with the three-

dimensional spectrum ψθ,θ(η) drawn with a continuous line, and the one-dimen-

sional spectra ψ1
θ,θ drawn with dashed lines. The overall agreement is extremely

good, except for the small differences in the behavior around the peak, and the

fact that (6.60) does not predict a viscous subrange; in other words, the inertial

subrange “goes on” forever . . .

It is desirable to study the behavior of the spectral model for realistic

values of ηP and N∗. For temperatures and humidities normally found on the
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Figure 6.4 – One- and three-dimensional spectra from model compared to

Kaimal’s (1973) empirical curve

Earth’s surface, ηP (equation (6.27-l)) will usually be in the range 0.0 − 1.0,

whereas N∗ (equation (6.27-k)), for the same range of temperatures, will depend

strongly on the value of the friction velocity u∗. Typical values of the latter

during the nights of the FIFE-89 campaign are between 0.1 and 0.5 m s−1, which

yields N∗ values no bigger than 0.2 close to the surface (at a height of 2.5 m).

The observed influence on the spectra of such values of N∗ will be shown to

be small, so that unless very low values of u∗ prevail, radiative effects cannot be

important. While it is still unclear how frequent this situation is during nighttime

at the aforementioned heights, there are several reported cases of intermittent

turbulence in a stable boundary Layer both in the atmosphere (Kondo et al.,
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1978; Nappo, 1991; Mahrt, 1989) and in the laboratory (Warhaft and Bolgiano,

1984), which must be an indication of small friction velocities. On the other

hand, we have been unable to detect intermittency in temperature records of the

most stable short runs observed during FIFE-89. At any rate, stability increases

with height, so that higher up (say at 10 m to 50 m above the ground) there

may be regions where radiative effects become very important. Over the lowest

few meters of the atmosphere, however, this situation seems unlikely if the FIFE

records can be considered representative. We begin by analizing the effect of

both stability and radiation on temperature spectra. This is done by assuming

ηP = 0.5, which is fairly representative of late summer nights, Peθ∗ = 250,000,

and two stabilities, ζ = 0 and ζ = 0.5, which again cover most of the observed

range during FIFE-89. For each of these two stabilities, we take N∗ = 0.0, 0.1

and 1.0, where this last value can be considered already quite unlikely. Table

6.2 shows these six cases, and they are plotted in Figure 6.5. In order to analyze

the behavior of the spectra in the inertial subrange and in the beginning of

the viscous subrange, it is also convenient to plot “compensated spectra” (i.e.;

spectra multiplied by η2/3) (Coantic and Simonin, 1984), which is done in figure

(6.5). Notice that there is no “bump” showing a tendency for a viscous-convective

subrange, which is a shortcoming that might easily be circumvented by a spectral

closure of the kind proposed by Hill (1978).

To summarize this part, the effect of radiation can only be felt when the

dimensionless parameter N∗ becomes of the order of 1, which is maybe too high a

value to be expected close to the surface, where shear is always important, even
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Table 6.2 - Values of dimensionless parameters used for calculating temperature

spectra

ηP N∗ Peθ∗ ζ

0.5 0.0 250, 000 0.0

0.5 0.1 250, 000 0.0

0.5 1.0 250, 000 0.0

0.5 0.0 250, 000 0.5

0.5 0.1 250, 000 0.5

0.5 1.0 250, 000 0.5

in very stable (i.e.; ζ = 0.5) conditions. The interplay of stability and radiation

seems to be quite weak: higher values of ζ simply shift the spectra to higher

wavenumbers (as well as increasing their ordinates, see (6.39)), whereas higher

values of N∗ lower their ordinates.

We finish by obtaining the dimensionless function φθθ, as promised, by

means of Claussen’s spectral model, and including the effects of radiation in it.

We will use it in the case N∗ = 0 to represent any scalar in the stable surface

layer; for non-null N∗’s, however, the results are valid for temperature only. By

doing this, we actually will be evaluating to what extent there exists similarity

between temperature and humidity in stable conditions. For as long as changes

in φθθ are small, this means that the radiative terms can be neglected in the
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Figure 6.5 – Temperature spectra as a function of ζ and N∗, for ηP = 0.5,

Peθ∗ = 250,000.

budgets of temperature variance and temperature-humidity covariances, (2.15-e)

and (2.15-g).

The relationship between φθθ and ψθ,θ is quite simple; since the integral

of the spectrum is equal to the variance,

φθθ(ζ, ηP , N∗) =

∫ ∞

0

ψθ,θ

dη

η
(6.65)

where the integral now must be performed numerically; even though there is

some variability with ηP , it is minor; this can be seen in equation (6.45), where

ηP is raised to 1/3, and confirms in dimensionless form the fact that the absolute

water vapor concentration plays a relatively minor role in radiative effects, first

realized by Coantic and Simonin (1984). How sensitive the function φθθ is to
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Figure 6.6 – “Compensated” (multiplied by η2/3) Radiative Spectra as a func-

tion of ζ and N∗, for ηP = 0.5, Peθ∗ = 250,000

ηP can be seen in Figures 6.7 through 6.10, for ηP = 0.25, 0.50, 0.75 and 1.00.

In these figures, φθθ is computed from (6.65) by means of numerical integration

for a wide variety of N∗’s, as a function of stability ζ. It is quite interesting

that it shows a mild increase with stability. Most researchers have chosen to

assume this function to be a constant in stable conditions, but the increase

shown in Figures 6.7–6.10 is so gentle that in practical situations it is certainly

statistically indistinguishable from a horizontal straight line . . . At the same

time it is seen, one more time, that radiative effects are quite inconsequential

for N∗ ≤ 0.1; this in a sense explains why, in previous chapters, the results of

virtually all statistical tests between temperature and humidity point to their
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being perfectly similar: radiative effects are just too small to play any important

role. On the other hand, it must never be out of sight that the representativeness

of field experiments in the atmosphere should be taken with caution until when

enough of them under the same conditions have been performed. In the case of

stable conditions, luckily for those who study them, this day is yet to come.
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Figure 6.7 – The Dimensionless Function φθθ computed for several values

of the parameter N∗, for ηP = 0.25 (a), 0.50 (b) 0.75 (c) and 1.00 (d), with

Peθ∗ = 250, 000
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6.9 Closure

We have attempted to quantify the relative importance of radiative ef-

fects in the stable surface layer, which during nocturnal periods may be just a

few meters thick (Stull, 1988). There, it is safe to assume that turbulent fluctu-

ations are homogeneous and stationary. This hypothesis (homogeneity) renders

the budgets of turbulence kinetic energy and temperature, and their spectral

counterparts, particularly simple. Moreover, the small distance from the surface

limits the scales of turbulent motion and facilitates the use of local closures.

With the help of one such simple spectral closure used by Claussen (1985a)

in the same context, it is possible to incorporate the radiative effects extensively

studied by Coantic and Simonin (1984). Adopting some analytical approxima-

tions for the radiative spectral dissipation terms and a related integral, the spec-

tral model yields analytical expressions for the temperature spectra which are

a function not only of stability ζ, but also of the dimensionless parameters ηP

and N∗. In this way, it is possible to study both stability and radiative effects

jointly. We have not only studied the spectral behavior under radiation, but

also assessed how the similarity function φθθ for the temperature variance is af-

fected. We have used dimensionless functions and variables throughout, so that

the relative importance of radiation is easily assessed.

It seems now apparent that a very simple criterion for radiative processes

to be unimportant exists, namely that N∗ ≤ 0.1 approximately, where N∗, given

by (6.27-k), is very easy to estimate. The results obtained here suggest that
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radiative effects may not be very important in the surface layer. On the other

hand, u∗ decreases with height in the Atmospheric Boundary Layer, and under

stable conditions turbulence may even become intermittent, so that it is quite

reasonable to expect a different situation at higher levels above the surface layer.

It is not clear, however, if the same simple-minded approach adopted here would

still be valid at these higher levels, where turbulence may not be homogeneous

and where the local closures that we used are less likely to be valid.



Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

Briefly, the main questions regarding the possible dissimilarities between tem-

perature and humidity are recapitulated. Then, the main findings of chapters 2,

3, 4, 5 and 6 are reviewed as a whole. There are theoretical and experimental

avenues to be pursued ahead; these are then commented upon in the section of

recommendations.

7.1 A summary of questions

Once it is realized that molecular diffusivity plays such a small direct role

in turbulent diffusion and transport, it is tempting to assume that turbulence

transports “everything” in the same way, where “everything” includes momen-

tum in a given direction, heat, mass of a certain scalar, derived quantities such as

vorticity, etc.. This has been known for a long time as “Reynolds’s Analogy” and

was first applied to the eddy diffusivities of momentum and heat. In the surface

layer of the atmosphere, it is now known that the analogy (as far as eddy diffusiv-

ities are concerned) does not hold under unstable conditions (Brutsaert, 1982 p.

68); they are, however, very much the same under neutral conditions(Högström,
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1989). Thus, that kind of generalization is less and less acceptable a priori, as

we try to deepen our understanding of turbulent transport processes.

The two most important scalar atmospheric fluxes are sensible heat H and

latent heat LE. Humidity is considerably harder to measure than temperature,

however, both in terms of means and of turbulent fluctuations. This is one reason

why it has been usually assumed that what has been measured and found for

temperature also holds for humidity. During the 70’s and 80’s, some disquieting

signs of a more complicated picture surfaced both in theoretical analyses and in

experiments (Warhaft, 1976; Verma et al., 1978; Lang et al., 1983a), particularly

in connection with the energy-budget Bowen ratio method. Difficulties with it

under stable conditions continue to be reported in the literature to this day as

in Assouline and Mahrer’s (1993) report on eddy-correlation and Bowen ratio

measurements of evaporation on lake Kineret, Israel. It is important to establish

where the differences found can be coming from. This thesis did not exhaust the

study of possible causes; it concentrated on a subset of questions:

1 – Can the dissimilarities happen under the validity of MOS theory ?

2 – Can radiation significantly change the temperature transport and dissipa-

tion vis-à-vis humidity ?

7.2 A summary of results

In chapter 2, a full set of equations governing the turbulent flow in the

surface layer was written down, both in the time-space domain, where they take
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the form of the equations for the means ui and the budgets for the covariances

u′iu
′
j , and in the time-wavenumber domain, where they were called spectral bud-

gets. The main simplifications which were assumed were those of stationarity

of the turbulence, and of homogeneity in the horizontal; they are usually asso-

ciated with the Monin-Obukhov Similarity (MOS) theory, which is the accepted

standard for analysis of atmospheric flows. Moreover, it is assumed that no

phase changes take place. This excludes the analysis of periods of fog forma-

tion. With the equations written down, it is possible to analyze the differences

between those containing temperature and humidity terms. Formally, the only

differences then are in the radiative terms which appear in the w, θ, θ, θ and θ, q

equations, and the different molecular diffusivities for heat νθ and water vapor

νq. Several important conclusions were drawn from the theoretical analysis of

spectra and cospectra. There, the energy-containing and inertial ranges are not

influenced by molecular effects (Tennekes and Lumley, 1972; Hinze, 1975): the

prediction is then that, properly non-dimensionalized, the spectral and cospec-

tral densities involving temperature should be equal to those involving humidity,

which provides a strong theoretical basis for the spectral analysis of field data

and its use to draw conclusions about the similarity of two scalars, such as done

(heuristically) by Lang et al. (1983a) and Ohtaki (1985). Finally, higher-order

cospectra (e.g., Sθ,θθ) were predicted to show a −2 slope in the inertial subrange.

Chapter 3 contains a review of theories and experiments regarding the

similarity of temperature and humidity in the last 20 years. The theoretical

approaches of Warhaft (1976), Brost (1978) and Hill (1989a) relied either on
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second-order closures, in the first two cases, or on dimensional analysis, in the

last, and showed some contradictory points regarding the equality/inequality of

eddy diffusivities and the value of the correlation coefficient between temperature

and humidity. We then used the dimensionless budgets of temperature variance,

humidity variance and temperature-humidity covariance to show that, in the case

of homogeneous (in the vertical direction) turbulence, all the former analyses

can be reconciled and collapse in the case of near-perfect similarity and (anti-)

correlation between temperature and humidity, plus the equality of their eddy

diffusivities. The theory actually predicts a slight dissimilarity (a correlation

coefficient squared slightly less than 1, even if the eddy diffusivities/dimensionless

gradients are equal) due to the different values of the molecular diffusivities, going

a step beyond what can be achieved by dimensional analysis alone.

In Chapter 4, actual field turbulence data of temperature, humidity and

vertical velocity are analyzed. This is done from the point of view of statistical

analysis in the time domain. Some indication of dissimilar behavior during the

night of Aug 03rd was found; the rest of the time, however, the dimensionless

Monin-Obukhov functions φ for temperature and humidity were shown to be

statistically indistinguishable. Moreover, it proved extremely fruitful to analyze

the turbulent data in runs of 52 min., instead of the original 26 min.-runs as

they were measured: this yielded much more stable 3-rd order moments, and

disclosed their constancy with stability ζ, showing further experimental evidence

of near-homogeneity in the vertical direction. An analysis of errors using the

theoretical framework of Lumley and Panofsky (1964) and Wyngaard (1973),
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plus a rough approximation of vertical velocity and temperature (or humidity)

as jointly normally distributed with a correlation coefficient of ±0.3 yielded an

averaging period of equivalent length.

Chapter 5 contains a gallery of spectral and cospectral densities of tem-

perature and humidity plotted together: properly scaled with products of u∗, θ∗

and q∗, they confirm the theoretical predictions that the (reduced) densities are

equal. Coherence between temperature and humidity displays a large range of

values extremely close to +1; it gently falls to zero after n = 0.1 Hz, but this

is very likely due to the spatial separation of the sensors. Finally, the predicted

−2 slope for higher-order scalar cospectra was confirmed with the use of the

temperature and (to a lesser degree) humidity data.

Finally, in Chapter 6 we investigated the extent to which radiation can

alter this picture of similarity: this was done with the help of a simple spectral

model originally proposed by Claussen (1985a); the model was re-written in

dimensionless form, and radiative effects were incorporated by fitting an empirical

function to the spectral radiative dissipation function of Spiegel (1957), Goody

(1964) and Coantic and Simonin (1984). This “dimensionless” approach leads to

the identification of 2 (dimensionless) parameters which account for the effect of

radiation on the temperature spectrum; sensitivity analysis then showed that, in

the surface layer, radiation probably plays a minor role, which confirms, after-the-

fact, the experimental results of the two former chapters. It was conjectured that

it may become important higher up, above the surface layer, as w′u′ diminishes

with height (the controlling parameter, N∗, can always be easily calculated with
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the values of temperature and friction velocity to check how important radiation

is). We also showed how the model is able to predict a function φθ,θ which agrees

extremely well with the average observations.

The answers to the question in the end of last section are then, 1) No,

except for extremely small effects due to different molecular diffusivities; and

2)No, except for very large (greater than 1) values of N∗.

7.3 Recommendations

On to the questions which were not addressed: in chapter 3, it was conjec-

tured that advection may strongly affect the correlation coefficient between two

scalars, as the data from Wesely and Hicks (1978) seem to suggest; yet, there are

very few studies relating local advection to the (dis-)similarity of two scalars (an

exception is Bertela, 1989). In particular, it may be possible (it was not tried!)

to re-do the analysis of chapter 3 including advective terms, and try to assess

how this inclusion changes the results. Because advection may be more serious

under stable than unstable conditions, and because it is also extremely hard to

quantify – so that it cannot be completely dismissed in most studies – it has

become the author’s favorite villain to blame observed dissimilarities on.

The spectral theories at our disposal are painfully inadequate to deal with

cospectra with vertical velocity, because they are mostly about isotropic turbu-

lence, where the fluxes in any direction are null. Yet the ultimate importance

of boundary-layer atmospheric turbulence research is in relation to the correct
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assessment of the surface fluxes of momentum, heat and water vapor, as well (as

environmental concerns grow) of other trace gases. It is not possible to relate the

one-dimensional cospectra measured to the three-dimensional shell averages in

wavenumber space which appear in the theory: this would be a worthy contribu-

tion, as well as a way to start to examine the effects of spatial sensor separation

on the calculation of scalar fluxes.

On the experimental side of the picture, it seems important that in the

future more attention be given to placing temperature and humidity (or any two

scalars) sensors as close as possible, when their separation may influence the

relevant measurements; it also seems desirable to average over periods longer

than 30-min (which has become quite a common period for averages: all of the

FIFE fluxes are reported as 30-min averages); during the night, at least, better

and more stable statistics can be obtained with averages over one hour.



Appendix A

DIGITAL FILTERING

AND ANALOG MEASUREMENTS

The digital filter

ã(t+∆t) =

(
1− ∆t

T

)
ã(t) +

∆t

T
a(t) (A.1)

where ã is the low-pass filtered series with cutoff frequency 1/T and a is the

“original” signal, is equivalent to an analog measurement with a sensor having a

time constant T .

A sensor is often idealistically modeled as an R–C circuit. An applied

electromotive forcel ε(t) results in a potential difference V (t) across the capacitor.

We associate ε(t) with the actual signal, and V (t) with the sensor response. The

equation for the R–C circuit is

dV

dt
+

1

T
V =

1

T
ε(t) (A.2)

where T = C/R is the circuit’s (sensor’s) time constant, C is the capacitance

and R the resistance. The solution is

V (t) =

∫ t

0

1

T
e−

t−τ
T ε(τ) dτ . (A.3)

Now back to (A.1), put

ã(t+∆t) = ã(t)− ∆t

T
ã(t) +

∆t

T
a(t)

196



197

ã(t+∆t)− ã(t)
∆t

= − 1

T
ã(t) +

1

T
a(t) . (A.4)

In the limit as ∆t→ 0,

dã

dt
+

1

T
ã(t) =

1

T
a(t) , (A.5)

which is the same as (A.2).



Appendix B

THE SPECTRAL RADIATIVE

DISSIPATION FUNCTION

In this appendix, standard results concerning the radiative dissipation function

are derived. In section B.1, the equation for the spectral radiative dissipation

function N(k) defined and used in chapter 6 is derived. This result was originally

obtained by Spiegel (1961). Then, in section B.2, we derive an equation that

allows the calculation of N(k) by means of average transmissions over frequency

bands. That equation appears (but is not derived) in Coantic and Simonin

(1984).

B.1 Derivation of the spectral radiative dissipation func-

tion

Consider Schwarzschild’s equation for the radiative fluctuations,

dI ′µ
ds

= sk
∂ I ′µ
∂xk

= −βµρv
(
I ′µ −

dBµ

dT
θ′
)

(B.1)

Taking the Fourier Transform of both sides of the second equality,

i (skkk)Îµ = −βµρv(Îµ −
dBµ

dT
θ̂)
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Figure B.1 – Spectral Integration Frame

Îµ =
βµρv

dBµ

dT

i (s · k) + βµρv
θ̂ (B.2)

The fluctuating radiative divergence is

∂ R′
k

∂xk
= −

∫ ∞

µ=0

∫ 4π

ω=0

βµρv(I
′
µ −

dBµ

dT
θ′) dω dµ (B.3)

and its Fourier transform is

F
{
∂ R′

k

∂xk

}
= −

∫ ∞

µ=0

∫ 4π

ω=0

βµρv(Îµ −
dBµ

dT
θ̂) dω dµ

= −
∫ ∞

µ=0

βµρv

{∫ 4π

ω=0

[
i (s · k)

i (s · k) + βµρv

]
dω

}
dBµ

dT
θ̂ dµ

(B.4)

Where (B.2) was used to obtain the last equality. To calculate the inner integral

in (B.4), choose a reference frame such that k = (0, 0, k) (see Figure B.1) and



200

dA = k2 sinχdϕdχ (B.5-a)

dω =
dA

k2
= sinχdϕdχ (B.5-b)

(s · k) = k cosχ (B.5-c)

Using β = ρvβµ for simplicity, we now have

∫ 4π

ω=0

[
i (s · k)

i (s · k) + βµρv

]
dω =

∫ 2π

ϕ=0

∫ π

χ=0

[
i k cosχ

β + i k cosχ

]
sinχdχ dϕ

= 2π

∫ π

χ=0

i k sinχ cosχ

β + i k cosχ
dχ

= 2π

∫ π

χ=0

(β − i k cosχ)( i k sinχ cosχ)

(β − i k cosχ)(β + i k cosχ)
dχ

= 2π

∫ π

χ=0

β i k sinχ cosχ

β2 + k2 cos2 χ
dχ

+ 2π

∫ π

χ=0

k2 cos2 χ sinχ

β2 + k2 cos2 χ
dχ (B.6)

The first integral above is zero: set

α = χ− π/2 (B.7)

and get
∫ π/2

α=−π/2

β i k sinα cosα

β2 + k2 sin2 α
dα = 0, (B.8)

because the integrand is odd. The second integral can be calculated with u =

sinα and v = ku :

2π

∫ π/2

α=−π/2

k2 sin2 α cosα

β2 + k2 sin2 α
dα =

4π

k

∫ 1

0

(ku)2

β2 + (ku)2
k du

=
4π

k

∫ k

0

v2

β2 + v2
dv
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=
4π

k

∫ k

0

[
1− β2

β2 + v2

]
dv

= 4π

[
1− β

k
arctan

k

β

]
(B.9)

The spectral radiative dissipation function N(k) is then

N(k) ≡ 1

ρcp
F
{
∂ R′

k

∂xk

}
1

θ̂

=
4π

ρcp

∫ ∞

µ=0

ρvβµ
dBµ

dT

[
1−

βµρv
k

arctan
k

βµρv

]
dµ (B.10)

B.2 Determination of N(k) with mean transmissions

To calculate N(k) by means of a table of mean transmissions of the ab-

sorbing gas and their derivatives with respect to distance r, consider

Tµ = e−βµρvr (B.11-a)

T ′
µ = −βµρve−βµρvr (B.11-b)

T ′′
µ = (βµρv)

2e−βµρvr (B.11-c)

and make use of the fact (Spiegel, 1992 p. 98)

∫ ∞

0

e−ar sin br

r
dr = arctan

b

a
(B.12)

Taking (B.11− b) and (B.11− c) into (B.10),

N(k) =
4π

ρcp

∫ ∞

µ=0

dBµ

dT

[
T ′
µ(0) +

∫ ∞

0

T ′′(r)

k

sin kr

r
dr

]
dµ

=
4π

ρcp

NB∑

j=1

∫

∆µj

dBµ

dT

[
T ′
µ(0) +

∫ ∞

0

T ′′(r)

k

sin kr

r
dr

]
dµ

(B.13)
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Figure B.2 – Planck’s Function dBµ/dT

where NB is the number of absorption bands, each having width ∆µj , such that

the whole spectrum is covered.

Figure B.2 shows the derivative dBµ/dT of Planck’s function for T =

293.15K together with the absorption bands in Houghton’s (1986) tables (some

of which cannot be seen in that scale). dBµ/dT is approximately constant over

the wavenumber ranges of the absorption bands, a typical value being ∆µ =

2500m−1. Therefore, (B.13) can be rewritten as

N(k) ≈ 4π

ρcp

NB∑

j=1

[
dBµj

dT
∆µj

]
1

∆µj

∫

∆µj

[
T ′
µ(0) +

∫ ∞

0

T ′′(r)

k

sin kr

r
dr

]
dµ

≈ 4π

ρcp

NB∑

j=1

dBµj

dT
∆µj

[
T

′

µ(0) +

∫ ∞

0

T
′′
(r)

k

sin kr

r
dr

]
(B.14)
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which should be compared with Coantic and Simonin’s (1984) equation (34).



Appendix C

DERIVATION OF TWO-POINT EQUATIONS

Here we derive the equations for the covariance of two quantities a, b at

two distinct points of space. Although the analysis is only spatial, extension to

two different moments in time should be straightforward. Consider the points

x ≡ (x1, x2, x3) (C.1-a)

ξ ≡ (ξ1, ξ2, ξ3) = x+ r . (C.1-b)

We indicate the average and fluctuating parts of turbulent quantities at x and ξ

as

a(x, t) ≡ a+ a′ (C.2-a)

b(ξ, t) ≡ b+ b′′ . (C.2-b)

We assume a homogeneous turbulence field, which means that the joint proba-

bility functions of the turbulence quantities are invariant under translation. This

in turn implies that the covariances of two quantities at two distinct points are

a function of the separation vector r alone:

a′b′′ = f(r) (C.3-a)

b′a′′ = g(r) . (C.3-b)
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We now derive the Two-point covariance equations. Consider the fluctuations of

any quantity a′, b′′ at two points. The equation for a′ = u′i reads

∂ u′i
∂t

+ uk
∂ u′i
∂xk

+u′k
∂ ui
∂xk

+
∂ u′iu

′
k

∂xk
=

gi

θv
θ′v −

1

ρ

∂ p′

∂xi
+ νui

∂2 u′i
∂xk∂xk

+
∂ u′iu

′
k

∂xk
. (C.4)

Multiplying (C.4) by u′′j and averaging:

∂ u′i
∂t

u′′j + uk
∂ u′iu

′′
j

∂xk
+ u′ku

′′
j

∂ ui
∂xk

+
∂ u′iu

′
ku

′′
j

∂xk
=

gi

θv
θ′vu

′′
j −

1

ρ

∂ p′u′′j
∂xi

+ νui

∂2 u′iu
′′
j

∂xk∂xk
.

(C.5)

By symmetry,

u′i
∂ u′′j
∂t

+ uk

∂ u′iu
′′
j

∂ξk
+ u′iu

′′
k

∂ uj
∂ξk

+
∂ u′iu

′′
ju

′′
k

∂ξk
=

gj

θv

u′iθ
′′
v −

1

ρ

∂ u′ip
′′

∂ξj
+ νuj

∂2 u′iu
′′
j

∂ξk∂ξk
.

(C.6)

Now with f (and g) as in (C.3), we relate derivatives of covariances with respect

to xi, ξi and ri by

ri = ξi − xi (C.7-a)

∂ f(xj)

∂ri
=
∂ f

∂xj

∂ xj
∂ri

= −∂ f
∂xi

(C.7-b)

∂ f(ξj)

∂ri
=
∂ f

∂ξj

∂ ξj
∂ri

=
∂ f

∂ξi
. (C.7-c)

We shall also assume that

∂ a

∂ξk
≈ ∂ a

∂xk
(C.8-a)

δa ≡ a− a (C.8-b)

δa/a
2 ≪ 1 , (C.8-c)

so that

(
g

a
− f

a
) =

ag − af
a a

=
a (g − f)− g δa

a a
≈ 1

a
(g − f) . (C.9)
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Summing (C.5) and (C.6), and using (C.7), (C.8) and (C.9) , we get

∂ u′iu
′′
j

∂t
+ (uk − uk)

∂ u′iu
′′
j

∂rk
+
∂ ui
∂xk

u′ku
′′
j +

∂ uj
∂xk

u′iu
′′
k +

∂ (u′iu
′′
ju

′′
k − u′iu′ku′′j )
∂rk

=

1

θv
(giθ

′
vu

′′
j + gju

′
iθ

′′
v)−

1

ρ

(
∂ u′ip

′′

∂rj
−
∂ p′u′′j
∂ri

)
+ (νui

+ νuj
)
∂2 u′iu

′′
j

∂rk∂rk
. (C.10)

Finally, we express the difference in mean velocities between the two points by a

Taylor expansion,

(uk − uk) ≈
∂ uk
∂xl

rl , (C.11)

obtaining

∂ u′iu
′′
j

∂t
+
∂ uk
∂xl

rl
∂ u′iu

′′
j

∂rk
+
∂ ui
∂xk

u′ku
′′
j +

∂ uj
∂xk

u′iu
′′
k +

∂ (u′iu
′′
ju

′′
k − u′iu′ku′′j )
∂rk

=

1

θv
(giθ

′
vu

′′
j + gju

′
iθ

′′
v)−

1

ρ

(
∂ u′ip

′′

∂rj
−
∂ p′u′′j
∂ri

)
+ (νui

+ νuj
)
∂2 u′iu

′′
j

∂rk∂rk
. (C.12)

Notice that (C.12) cannot be further simplified, because in general a′b′′ 6=

b′a′′. This also means that when a 6= b, there are two covariance equations, which

almost doubles their number compared to the one-point equations of Chapter 2.
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in: Métais, O. and Lesieur, M. (editors), Turbulence and Coherent Struc-

tures, 387-412, Kluwer Academic Publishers, Dordrecht.

97 Kaimal, J.C. (1973), “Turbulence spectra, length scales and structure pa-

rameters in the stable surface layer”, Boundary Layer Meteorology 4, 289–

309.

98 Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Coté, O. R. (1972), “Spec-
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133 Métais, O. and Herring, J.R. (1989), “Numerical simulations of freely

evolving turbulence in stably stratified fluids”, Journal of Fluid Mechan-

ics 202, 117–148.



223

134 Moeng, C. (1984), “A large-eddy simulation model for the study of

planetary boundary-layer turbulence”, Journal of The Atmospheric Sci-

ences 41, 2052–2062.

135 Moeng, C. and Wyngaard, J.C. (1986), “An analysis of closures for

pressure-scalar covariances in the convective boundary layer”, Journal of

The Atmospheric Sciences 43, 2,499–2,513.

136 Moncrieff, J. B., Verma, S. B. and Cook, D. R. (1992), “Intercomparison

of eddy correlation carbon dioxide sensors during FIFE-89”, Journal of

Geophysical Research 97 D17, 18,725–18,730.

137 Monin, A. S. (1970), “The atmospheric boundary layer”, Annual Reviews

of Fluid Mechanics 19, 225–250.

138 Moore, C.J. (1986), “Frequency response corrections for eddy correlation

systems”, Boundary Layer Meteorology 37, 17–35.

139 Moraes, O.L.L. and Epstein, M. (1987), “The velocity spectra in the stable

surface layer”, Boundary Layer Meteorology 40, 407–414.

140 Moraes, O.L.L. and Goedert, J. (1988), “Kaimal’s isopleths from a closure

model”, Boundary Layer Meteorology 45, 83–92.

141 Nagano, Y. and Tagawa, M. (1990), “A structural turbulence model

for triple products of velocity and scalar”, Journal of Fluid Mechan-

ics 215, 639–657.

142 Nappo, C. J. (1991), “Sporadic breakdowns of stability in the PBL over

simple and complex terrain”, Boundary Layer Meteorology 54, 69–87.



224

143 Nieuwstadt, F.T.M. (1984), “The turbulent structure of the stable, noc-

turnal boundary layer”, Journal of The Atmospheric Sciences 41, 2202–

2216

144 Obukhov, A.M. (1946, 1971), “Turbulence in an atmosphere with non-

uniform temperature”, Boundary Layer Meteorology 2, 7–29.

145 Ohtaki, E. (1985), “On the similarity in atmospheric fluctuations of carbon

dioxide, water vapor and temperature over vegetated fields”, Boundary

Layer Meteorology 32, 25–37.

146 Olesen, H.R., Larsen, S.E. and Hojstrup, J. (1984), “Modelling velocity

spectra in the lower part of the planetary boundary layer”,Boundary Layer

Meteorology 29, 285–312.

147 Panofsky, H.A. and Dutton, J.A. (1984), Atmospheric Turbulence, John

Wiley.

148 Pao, Y.H. (1965) “Structure of turbulent velocity and scalar fields at large

wavenumbers”, The Physics of Fluids 8, 1063–1075.

149 Paquin, J.E. and Pond, S. (1971), “The determination of the Kolmogorov

constants for velocity, temperature and humidity fluctuations from second-

and third-order structure functions”, Journal of Fluid Mechanics 50, 257–

269.

150 Parlange, M.B. and Katul, G.G. (1992), “An advection–aridity evapora-

tion model”, Water Resources Research 28, 127–132.

151 Penman, H.L. (1948), “Natural evaporation from open water, bare soil,

and grass”, Proceedings of the Royal Society, London A193, 120–146.



225

152 Phelps, G.T. and Pond, S. (1971), “Spectra of the temperature and humid-

ity fluctuations and of fluxes of moisture and heat in the marine boundary

layer”, Journal of The Atmospheric Sciences 28, 918–928.

153 Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992),

Numerical Recipes in C, 2nd ed., Cambridge University Press.

154 Priestley, J.T. and Hill, R.J. (1985), “Measuring high-frequency humidity,

temperature and radio refractive index in the surface layer”, Journal of

Atmospheric and Oceanic Technology 2, 233–251.

155 Priestley, C.H.B. and Taylor, R.J. (1972), “On The Assessment of Sur-

face Heat Flux and Evaporation Using Large-Scale Parameters”, Monthly

Weather Review 100, 81–92.

156 Raupach, M.R. (1978), “Infrared fluctuation hygrometry in the atmo-

spheric surface layer”, Quarterly Journal of the Royal Meteorological So-

ciety 104, 309–322.

157 Raupach, M.R., Weng, W.S., Carruthers, D.J. and Hunt, J.C.R. (1992),

“Temperature and humidity fields and fluxes over low hills”, Quarterly

Journal of the Royal Meteorological Society 118, 191-225.

158 Rees, J.M. (1991), “On the characteristics of eddies in the stable atmo-

spheric boundary layer”, Boundary Layer Meteorology 55, 325–343.

159 Roberts, R.E., Selby, J.E.A. and Biberman, L.M. (1976), “Infrared con-

tinuum absorption by atmospheric water-vapor in the 8–12 µm window”,

Applied Optics 15, 2085–2090.



226

160 Rodgers, C.D. and Walshaw, C.D. (1966), “The computation of infra-red

cooling rate in planetary atmospheres”, Quarterly Journal of the Royal

Meteorological Society 92, 67–92.

161 Schertzer, D. and Simonin, O. (1981), “A theoretical study of radiative

cooling in homogeneous and isotropic turbulence”, Turbulent Shear Flows

III, Springer-Verlag.

162 Schmitt, K.F., Friehe, C.A. and Gibson, C.H. (1981), “Structure of marine

surface layer turbulence”, Journal of The Atmospheric Sciences 36, 602–

618.

163 Sellers, P.J., Hall, F.G., Asrar, G., Strebel, D.E. and Murphy, R.E. (1992),

“An overview of the First International Satellite Land Surface Climatol-

ogy Project ISLSCP Field Experiment (FIFE)”, Journal of Geophysical

Research 97 D17, 18,345–18,371.

164 Shaw, W.J. and Businger, J.A. (1985), “Intermittency and the organi-

zation of turbulence in the near-neutral marine atmospheric boundary

layer”, Journal of The Atmospheric Sciences 42, 2563–2584.

165 Sheppard, P.A., Tribble, D.T. and Garratt, J.R. (1972), “Studies of turbu-

lence in the surface layer over water (Lough Neagh). Part I: instrummenta-

tion, programme, profiles”, Quarterly Journal of the Royal Meteorological

Society 98, 627–641.

166 Shved, G.M. (1978), “Influence of radiative transfer on certain types of

motions in planetary atmospheres”, Advances in Heat Transfer 14, 249–

280.



227

167 Simonin, O., Coantic, M. and Schertzer, D. (1981), “Effet du rayon-

nement infrarouge sur la turbulence de témperature dans l’atmosphère:

structule spectrale et taux de dissipation”, Comptes Rendus, Acad. Sc.

Paris 293, 245–248.
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