TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P03, 30 jun 2025 Prof. Nelson Luís Dias

()

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL. VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

 ${f 1}$ [20] Utilizando obrigatoriamente a regra de Leibnitz, calcule

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^x \cos(t^2) \, \mathrm{d}t$$

SOLUÇÃO DA QUESTÃO:

A regra é

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a(x)}^{b(x)} f(t,x) \, \mathrm{d}t = f(b,x) \frac{\mathrm{d}b}{\mathrm{d}x} - f(a,x) \frac{\mathrm{d}a}{\mathrm{d}x} + \int_a^b \frac{\partial f(t,x)}{\partial x} \, \mathrm{d}t.$$

Então,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a(x)}^{b(x)} f(t, x) \, \mathrm{d}t = \cos(x^2) \times 1 - \cos(0^2) \times 0 + \int_0^x \frac{\partial [\cos(t^2)]}{\partial x} \, \mathrm{d}t$$
$$= \cos(x^2) \blacksquare$$

2 [20] Calcule a integra de linha

$$I = \int_{\Gamma} (x + y + z) \, \mathrm{d}\ell$$

sobre a curva

$$x = 1,$$

$$y = \frac{t^2}{\sqrt{2}}, \qquad t \in [0, 1].$$

$$z = \frac{t^2}{\sqrt{2}},$$

SOLUÇÃO DA QUESTÃO:

$$\begin{split} r &= (1, \frac{t^2}{\sqrt{2}}, \frac{t^2}{\sqrt{2}}), \\ \frac{\mathrm{d}r}{\mathrm{d}t} &= (0, \frac{2}{\sqrt{2}}t, \frac{2}{\sqrt{2}}t), \\ |v| &= \sqrt{0 + \frac{4}{2}t^2 + \frac{4}{2}t^2}, \\ &= \sqrt{0 + 2t^2 + 2t^2} = \sqrt{4t^2}, \\ \mathrm{d}\ell &= |v| \, \mathrm{d}t = 2t \mathrm{d}t, \\ I &= \int_{t=0}^1 \left(1 + \frac{t^2}{\sqrt{2}} + \frac{t^2}{\sqrt{2}}\right) 2t \, \mathrm{d}t = \frac{1 + \sqrt{2}}{\sqrt{2}} \, \blacksquare \end{split}$$

3 [20] Um campo de velocidade é dado por

$$\boldsymbol{u} = (y^2, z^2, x^2);$$

calcule a vorticidade $\nabla \times u$.

SOLUÇÃO DA QUESTÃO:

$$\nabla \times \boldsymbol{u} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & z^2 & x^2 \end{vmatrix}$$
$$= -2z\boldsymbol{i} - 2x\boldsymbol{j} - 2y\boldsymbol{k} \blacksquare$$

Calcule a série de Laurent de

$$f(z) = \frac{1}{(z+1)(z-1)}$$

em torno de z = 0 na região |z| > 1.

SOLUÇÃO DA QUESTÃO: Note que

$$|z| > 1,$$

$$\frac{1}{|z|} = \left| \frac{1}{z} \right| < 1.$$

Então,

$$\frac{1}{(z+1)(z-1)} = \frac{1}{2} \left[\frac{1}{z-1} - \frac{1}{z+1} \right]$$

$$= \frac{1}{2} \left[\frac{1}{z\left(1 - \frac{1}{z}\right)} - \frac{1}{z\left(1 + \frac{1}{z}\right)} \right]$$

$$= \frac{1}{2z} \left[\frac{1}{\left(1 - \frac{1}{z}\right)} - \frac{1}{\left(1 + \frac{1}{z}\right)} \right]$$

$$= \frac{1}{2z} \left[\left(1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \dots\right)$$

$$- \left(1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \frac{1}{z^4} - \dots\right) \right]$$

$$= \frac{1}{2z} \left[\frac{2}{z} + \frac{2}{z^3} + \frac{2}{z^5} + \dots \right]$$

$$= \frac{1}{z^2} + \frac{1}{z^4} + \frac{1}{z^6} + \dots \blacksquare$$

5 [20] Sabemos que a solução geral de

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y = 0$$

é

$$y(x) = A\cos(x) + B\sin(x).$$

Obtenha esse resultado fazendo

$$y(x) = \sum_{n=0}^{\infty} a_n x^n,$$

derivando duas vezes, e substituindo na EDO. Note que isso **não** é o método de Frobenius (não há pontos singulares), mas o procedimento é **similar** (e mais simples: **não há nenhuma equação indicial** neste problema!).

SOLUÇÃO DA QUESTÃO:

$$y = \sum_{n=0}^{\infty} a_n x^n,$$

$$y' = \sum_{n=0}^{\infty} n a_n x^{n-11},$$

$$y'' = \sum_{n=0}^{\infty} (n-1) n a_n x^{n-2}.$$

Substituindo na EDO:

$$\sum_{n=0}^{\infty} (n-1)na_n x^{n-2} + \sum_{n=0}^{\infty} a_n x^n = 0;$$

$$n-2 = m,$$

$$n = m+2,$$

$$\sum_{m=-2}^{\infty} (m+1)(m+2)a_{m+2} x^m + \sum_{n=0}^{\infty} a_n x^n = 0.$$

Os primeiros dois termos do 1° somatório são nulos (m=-2 e m=-1); portanto, o somatório efetivamente começa de 0. Então,

$$\sum_{m=0}^{\infty} (m+1)(m+2)a_{m+2}x^m + \sum_{n=0}^{\infty} a_n x^n = 0,$$

$$\sum_{n=0}^{\infty} (n+1)(n+2)a_{n+2}x^n + \sum_{n=0}^{\infty} a_n x^n = 0,$$

$$\sum_{n=0}^{\infty} [(n+1)(n+2)a_{n+2} + a_n] x^n = 0,$$

$$a_{n+2} = -\frac{a_n}{(n+1)(n+2)}$$

A relação de recorrência varre os pares partindo de n = 0, ou os ímpares partindo de n = 1. Sem perda de generalidade, faça $a_0 = 1$; então,

$$a_2 = -\frac{1}{2} = \frac{1}{2!},$$

$$a_4 = +\frac{1}{24} = \frac{1}{4!},$$

$$a_6 = -\frac{1}{720} = -\frac{1}{6!},$$

$$a_8 = +\frac{1}{40320} = \frac{1}{8!},$$

etc., e a primeira solução é

$$y_1(x) = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \frac{1}{8!}x^8$$
$$= \cos(x).$$

Analogamente, faça $a_1 = 1$ e obtenha

$$a_3 = -\frac{1}{6} = \frac{1}{3!},$$

$$a_5 = +\frac{1}{120} = \frac{1}{5!},$$

$$a_7 = -\frac{1}{5040} = -\frac{1}{7!},$$

$$a_8 = +\frac{1}{362880} = \frac{1}{9!},$$

etc., e a segunda solução é

$$y_1(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \frac{1}{9!}x^9$$

= sen(x) •