TEA010 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P01A, 11 ago 2023



Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: \_\_\_\_\_

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO  $\underline{A}$ .

1 [25] O programa onda1d-ins.py apresentado em sala de aula calcula 1/0.0005 = 2000 passos de tempo n da solução numérica  $u_i^n$  da equação da onda cinemática; no entanto, a linha

$$u = zeros((2,nx+1),float)$$

aloca apenas 2 linhas para o tempo. Explique, em Português claro e correto, por que apenas 2 são suficientes.

### SOLUÇÃO DA QUESTÃO:

Prof. Nelson Luís Dias

No esquema de diferenças finitas utilizado pelo programa onda1d-ins.py, os valores da função u no tempo n+1 dependem apenas dos valores no tempo n. Portanto, partindo de n=0, podemos calcular numericamente

passo de tempo 
$$n = 1$$
:  $u[1] = f(u[0])$ ,

onde  $f(\cdot)$  representa genericamente o esquema de diferenças finitas explícito para todos os pontos da malha, e u[1] guarda os valores de  $u^{(n=1)}$ . Depois que os valores de u[0] foram escritos em disco, eles não são mais necessários para o algoritmo, *e podem ser sobrescritos*. Portanto, no próximo passo de tempo podemos fazer

passo de tempo 
$$n = 2$$
:  $u[0] = f(u[1])$ ,

e utilizar u[0] para guardar os valores de  $u^{(n=2)}$ . Agora, é a linha u[1] que não é mais necessária; após escrevê-la em disco, podemos reutilizá-la:

passo de tempo 
$$n = 3$$
:  $u[1] = f(u[0])$ ,

e assim sucessivamente. A forma simples de implementar a troca de índices é fazer

$$(old,new) = (0,1)$$

inicialmente e depois trocar a cada passo de tempo:

2 [25] Desejamos resolver numericamente a equação diferencial parcial

$$\frac{\partial \phi}{\partial t} + c \frac{\partial \phi}{\partial x} = k\phi,$$

onde c e k são constantes positivas, com o esquema numérico

$$\frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + c \frac{\phi_i^n - \phi_{i-1}^n}{\Delta x} = k \phi_i^n$$

Faça uma análise de estabilidade de von Neumann, e mostre que a condição de estabilidade é do tipo

$$\alpha \text{Co}[\text{Co} - (\text{Ka} + 1)] + \beta (\text{Ka} + 1)^2 \le 1$$

onde Co =  $c\Delta t/\Delta x$  e Ka =  $k\Delta t$ , ou seja: **encontre**  $\alpha$  e  $\beta$ . Note que  $\alpha$  depende de  $C_k \equiv \cos(k_l\Delta x)$  na notação padrão utilizada nesta disciplina.

#### SOLUÇÃO DA QUESTÃO:

Sabemos que a mesma equação de diferenças finitas se aplica para os erros de arredondamento; portanto,

$$\frac{\epsilon_i^{n+1} - \epsilon_i^n}{\Delta t} + c \frac{\epsilon_i^n - \epsilon_{i-1}^n}{\Delta x} = k \epsilon_i^n.$$

Expandimos em série de Fourier,

$$\epsilon_i^n = \sum_{i=1}^{N/2} \xi_l e^{at_n} e^{ik_l x_i},$$

e substituímos na equação de diferenças. Cada harmônico agora obedece a

$$\frac{\xi_{l}e^{a(t_{n}+\Delta t)}e^{\mathrm{i}k_{l}x_{i}}-\xi_{l}e^{at_{n}}e^{\mathrm{i}k_{l}x_{i}}}{\Delta t}+c\frac{\xi_{l}e^{at_{n}}e^{\mathrm{i}k_{l}x_{i}}-\xi_{l}e^{at_{n}}e^{\mathrm{i}k_{l}(x_{i}-\Delta x)}}{\Delta x}=k\xi_{l}e^{at_{n}}e^{\mathrm{i}k_{l}x_{i}}$$

$$\xi_{l}e^{a(t_{n}+\Delta t)}e^{\mathrm{i}k_{l}x_{i}}-\xi_{l}e^{at_{n}}e^{\mathrm{i}k_{l}x_{i}}+\underbrace{\frac{c\Delta t}{\Delta x}}_{\mathrm{Co}}\left(\xi_{l}e^{at_{n}}e^{\mathrm{i}k_{l}x_{i}}-\xi_{l}e^{at_{n}}e^{\mathrm{i}k_{l}(x_{i}-\Delta x)}\right)=\underbrace{k\Delta t}_{\mathrm{Ka}}\xi_{l}e^{at_{n}}e^{\mathrm{i}k_{l}x_{i}}$$

$$e^{a\Delta t}-1+\mathrm{Co}\left(1-e^{-\mathrm{i}k_{l}\Delta x}\right)=\mathrm{Ka}$$

Portanto devemos ter

$$e^{a\Delta t} = 1 - \text{Co}\left(1 - e^{-ik_l\Delta x}\right) + \text{Ka},$$
  
=  $(1 + \text{Ka} - \text{Co}) + \text{Co}\cos(k_l\Delta x) - i\text{Co}\sin(k_l\Delta x);$ 

Desejamos que o módulo do fator de amplificação  $e^{a\Delta t}$  seja menor que 1. O módulo (ao quadrado) é

$$\left| e^{a\Delta t} \right|^2 = (1 + \text{Ka} - \text{Co} + \text{Co}\cos(k_l \Delta x))^2 + (\text{Co}\sin(k_l \Delta x))^2$$
.

Para aliviar a notação, façamos

$$C_k \equiv \cos(k_l \Delta x),$$
  
 $S_k \equiv \sin(k_l \Delta x).$ 

Então,

$$\begin{aligned} \left| \mathbf{e}^{a\Delta t} \right|^2 &= (\mathbf{Co}S_k)^2 + (\mathbf{1} + \mathbf{Ka} - \mathbf{Co} + \mathbf{Co}C_k)^2 \\ &= \mathbf{Ka}^2 + 2C_k \mathbf{Co}\mathbf{Ka} - 2\mathbf{Co}\mathbf{Ka} + 2\mathbf{Ka} + C_k^2 \mathbf{Co}^2 - 2C_k \mathbf{Co}^2 + 2C_k \mathbf{Co}^2 + 2C_k \mathbf{Co} - 2\mathbf{Co} + 1 \\ &= \mathbf{Co}^2 S_k^2 + (\mathbf{Co}^2 C_k^2 + \mathbf{Co}^2 + \mathbf{Ka}^2 + 1) + 2(-\mathbf{Co}^2 C_k + \mathbf{Co}C_k \mathbf{Ka} + \mathbf{Co}C_k - \mathbf{Co}\mathbf{Ka} - \mathbf{Co} + \mathbf{Ka}) \\ &= (2\mathbf{Co}^2 + \mathbf{Ka}^2 + 1) + 2(-\mathbf{Co}^2 C_k + \mathbf{Co}C_k \mathbf{Ka} + \mathbf{Co}C_k - \mathbf{Co}\mathbf{Ka} - \mathbf{Co} + \mathbf{Ka}) \\ &= \mathbf{Co}^2 (2 - 2C_k) + 2\mathbf{Co}(C_k \mathbf{Ka} + C_k - \mathbf{Ka} - 1) + \mathbf{Ka}^2 + 2\mathbf{Ka} + 1 \\ &= 2\mathbf{Co}^2 (1 - C_k) + 2\mathbf{Co}(C_k - 1 + \mathbf{Ka}(C_k - 1)) + (\mathbf{Ka} + 1)^2 \\ &= 2\mathbf{Co}^2 (1 - C_k) + 2\mathbf{Co}((C_k - 1)(\mathbf{Ka} + 1)) + (\mathbf{Ka} + 1)^2. \end{aligned}$$

A condição para que o esquema de diferenças finitas seja estável é, então,

$$\begin{split} 2\text{Co}^2(1-C_k) + 2\text{Co}(C_k-1)(\text{Ka}+1) + (\text{Ka}+1)^2 &\leq 1, \\ 2\text{Co}\left[\text{Co}(1-C_k) + (C_k-1)(\text{Ka}+1)\right] + (\text{Ka}+1)^2 &\leq 1, \\ 2(1-C_k)\text{Co}\left[\text{Co} - (\text{Ka}+1)\right] + (\text{Ka}+1)^2 &\leq 1, \end{split}$$

donde

$$\alpha = 2(1 - C_k),$$
  
$$\beta = 1 \blacksquare$$

3 [25] Calcule, por integração a partir da definição,

$$\mathscr{L}\left\{t\mathrm{e}^{-t}\right\}$$
.

SOLUÇÃO DA QUESTÃO:

$$\mathcal{L}\left\{te^{-t}\right\} = \int_{t=0}^{\infty} e^{-st} te^{-t} dt$$
$$= \int_{t=0}^{\infty} te^{-(1+s)t} dt$$
$$= \frac{1}{(s+1)^2} \blacksquare$$

Em detalhe,

$$\mathscr{L}\left\{te^{-t}\right\} = \frac{1}{-(1+s)} \int_{t=0}^{\infty} \underbrace{t}_{u} \underbrace{e^{-(1+s)t} \left[-(1+s)\right] dt}_{dn}$$

Então

$$u = t,$$
  $du = dt,$   $dv = e^{-(1+s)t} [-(1+s)] dt$   $v = e^{-(1+s)t}.$ 

Agora,

$$\mathcal{L}\left\{te^{-t}\right\} = \frac{1}{-(1+s)} \left[uv\Big|_{0}^{\infty} - \int_{0}^{\infty}vdu\right] 
= \frac{1}{-(1+s)} \left[\lim_{t \to \infty} \left(te^{-(1+s)t}\right)^{-0} - \lim_{t \to 0} \left(te^{-(1+s)t}\right)^{-0} - \int_{0}^{\infty}e^{-(1+s)t} dt\right] 
= \frac{1}{1+s} \int_{0}^{\infty}e^{-(1+s)t} dt 
= \frac{-1}{(1+s)^{2}} \int_{0}^{\infty}e^{-(1+s)t} \left[-(1+s)\right] dt 
= \frac{-1}{(1+s)^{2}} \left[\lim_{t \to \infty}e^{-(1+s)t} - \lim_{t \to 0}e^{-(1+s)t}\right] 
= \frac{1}{(1+s)^{2}} \blacksquare$$

$$y'' + y = sen(x),$$
  $y(0) = 1,$   $y'(0) = 1.$ 

# Simplifique ao máximo.

$$\mathcal{L}\{y''+1\} = \mathcal{L}\{sen(x)\},\$$

$$[s^{2}\overline{y} - sy(0) - y'(0)] + \overline{y} = \frac{1}{s^{2} + 1}$$

$$[s^{2}\overline{y} - s - 1] + \overline{y} = \frac{1}{s^{2} + 1}$$

$$\overline{y}(s^{2} + 1) = (s + 1) + \frac{1}{s^{2} + 1}$$

$$\overline{y}(s^{2} + 1) = \frac{s^{3} + s^{2} + s + 2}{s^{2} + 1}$$

$$\overline{y}(s) = \frac{s^{3} + s^{2} + s + 2}{(s^{2} + 1)^{2}} \blacksquare$$

| TEA010 Matemática Aplicada II              |
|--------------------------------------------|
| Curso de Engenharia Ambiental              |
| Departamento de Engenharia Ambiental, UFPR |
| P01B, 18 ago 2023                          |
| Prof. Nelson Luís Dias                     |



Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: \_\_\_\_\_

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO  $\underline{A}$ .

1 [25] Seja o esquema de diferenças finitas *upwind* explícito e condicionalmente estável para a equação da onda:

$$u_i^{n+1} = u_i^n - \text{Co}[u_i^n - u_{i-1}^n].$$

Considere que a matriz u foi alocada com u = zeros((2,nx+1),float), onde zeros foi importada de numpy, com nx=1000, e que você está calculando u[new] a partir de u[old], sendo que old refere-se ao passo de tempo n, e new ao passo de tempo n+1. Mostre como, utilizando a técnica de *slicing*, você pode calcular u[new,1:nx] *em apenas uma linha de código em Python (usando numpy)*; suponha que a variável Cou, com o número de Courant, já foi calculada e que ela garante a estabilidade do esquema.

SOLUÇÃO DA QUESTÃO:

u[new,1:nx] = u[old,1:nx] - Cou\*(u[old,1:nx] - u[old,0:nx-1])

2 [25] Sem utilizar frações parciais, encontre a transformada de Laplace inversa

$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\}.$$

# SOLUÇÃO DA QUESTÃO:

Uso o teorema da convolução,

$$\mathcal{L}[f*g] = \overline{f}(s)\overline{g}(s) \Rightarrow \mathcal{L}^{-1}\left\{\overline{f}(s)\overline{g}(s)\right\} = \int_{\tau=0}^{t} f(\tau)g(t-\tau)\,\mathrm{d}\tau.$$

Mas

$$\overline{f}(s) = \frac{1}{s} \Rightarrow f(t) = 1, \ \overline{g}(s) = \frac{1}{s^2 + 4} \Rightarrow g(t) = \frac{\sin 2t}{2},$$

donde

$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\} = \int_{\tau=0}^{t} \frac{\sin 2(t-\tau)}{2} d\tau = \frac{1-\cos 2t}{4} \blacksquare$$

 ${f 3}$  [25] Usando, obrigatoriamente, transformada de Laplace, resolva o problema de valor inicial

$$x'' + 4x' + 3x = e^{-3t}$$
,  $x(0) = 0$ ,  $x'(0) = 0$ ,

ou seja: encontre x(t).

### SOLUÇÃO DA QUESTÃO:

Tomando a transformada de Laplace da equação diferencial e introduzindo as condições iniciais,

$$s^{2}\overline{x} + 4s\overline{x} + 3\overline{x} = \frac{1}{s+3},$$

$$\overline{x}(s^{2} + 4s + 3) = \frac{1}{s+3},$$

$$\overline{x}(s+3)(s+1) = \frac{1}{s+3},$$

$$\overline{x}(s) = \frac{1}{(s+3)^{2}(s+1)} = \frac{A}{(s+3)^{2}} + \frac{B}{(s+3)} + \frac{C}{s+1}$$

$$= \frac{1}{4(s+1)} - \frac{1}{4(s+3)} - \frac{1}{2(s+3)^{2}};$$

$$x(t) = \frac{1}{4}e^{-t} - \frac{1}{4}e^{-3t} - \frac{1}{2}te^{-3t} \blacksquare$$

4 [25] Utilizando obrigatoriamente decomposição em frações parciais, calcule a transformada de Laplace inversa de

$$\overline{f}(s) = \frac{1}{s^2 - a^2}.$$

$$\frac{1}{s^2 - a^2} = \frac{1}{(s - a)(s + a)}$$

$$\frac{1}{2a} \left[ \frac{1}{s - a} - \frac{1}{s + a} \right];$$

$$\mathcal{L}^{-1} \left\{ \frac{1}{s^2 - a^2} \right\} = \frac{1}{2a} \left[ e^{at} - e^{-at} \right]$$

$$= \frac{1}{a} \left[ \frac{e^{at} - e^{-at}}{2} \right]$$

$$= \frac{1}{a} \operatorname{senh}(at) \blacksquare$$

TEA010 Matemática Aplicada II Curso de Engenharia Ambiental

Departamento de Engenharia Ambiental, UFPR

P02A, 1 set 2023

Prof. Nelson Luís Dias

#### Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura:

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO  $\underline{A}$ .

1 [25] Resolva a equação diferencial

$$\frac{dx}{dt} + \frac{1}{T}x = \delta(t), \qquad x(0_{-}) = 0,$$

usando obrigatoriamente transformadas de Laplace. Por causa da presença da distribuição delta de Dirac, é conveniente definir

$$\mathscr{L}{f(t)} \equiv \int_{0_{-}}^{\infty} f(t) e^{-st} dt.$$

Siga o seguinte roteiro:

- a) [05] Monte a tabela de transformadas de que você necessitará, na ida ou na volta, calculando  $\mathscr{L}\{e^{at}\}$  e  $\mathscr{L}\{\delta(t)\}$ .
- b) [05] Mostre que

$$\mathcal{L}\{H(t-a)f(t-a)\} = e^{-as}\mathcal{L}\{f(t)\}.$$

c) [15] De posse dos resultados de a) e de b), resolva o problema.

SOLUÇÃO DA QUESTÃO:

a)

$$\mathcal{L}\lbrace e^{at}\rbrace = \int_{0_{-}}^{\infty} e^{-st} e^{at} dt = \frac{1}{s-a};$$
  
$$\mathcal{L}\lbrace \delta(t)\rbrace = \int_{0}^{\infty} e^{-st} \delta(t) dt = 1.$$

b)

$$\int_{0_{-}}^{\infty} H(t-a)f(t-a)e^{-st} dt = \int_{0_{-}}^{\infty} H(t-a)f(t-a)e^{-s(t-a)}e^{-as} dt$$

$$= e^{-as} \int_{0_{-}}^{\infty} H(t-a)f(t-a)e^{-s(t-a)} d(t-a)$$

$$= e^{-as} \int_{a}^{\infty} f(t-a)e^{-s(t-a)} d(t-a)$$

$$= e^{-as} \int_{\tau=0}^{\infty} f(\tau)e^{-s\tau} d\tau$$

$$= e^{-as} \mathcal{L}\{f(t)\}.$$

c)

$$s\overline{x} - x(0_{-}) + \frac{1}{T}\overline{x} = 1$$

$$\overline{x}\left(s + \frac{1}{T}\right) = 1$$

$$\overline{x} = \frac{1}{s - \frac{1}{T}} = \mathcal{L}\left\{H(t)e^{-t/T}\right\} \Rightarrow$$

$$x(t) = H(t)e^{-t/T}.$$

$$\int_0^{\pi} x \sec(x) \, dx = \pi,$$

$$\int_0^{\pi} x^2 \, dx = \frac{\pi^3}{3},$$

$$\int_0^{\pi} \sec^2(x) \, dx = \frac{\pi}{2},$$

utilize obrigatoriamente a desigualdade de Schwarz para obter uma desigualdade envolvendo  $\pi$  e  $\sqrt{6}$ . Simplifique ao máximo.

$$\begin{split} |\langle f,g\rangle | &\leq \|f\| \|g\|, \\ \left| \int_0^\pi x \operatorname{sen}(x) \, \mathrm{d}x \right| &\leq \left[ \int_0^\pi x^2 \, \mathrm{d}x \right]^{1/2} \left[ \int_0^\pi \operatorname{sen}^2(x) \, \mathrm{d}x \right]^{1/2}; \\ \pi &\leq \left[ \frac{\pi^3}{3} \right]^{1/2} \left[ \frac{\pi}{2} \right]^{1/2} \\ \pi &\leq \left[ \frac{\pi^4}{3 \times 2} \right]^{1/2} \\ \pi &\leq \frac{\pi^2}{\sqrt{3}\sqrt{2}} \implies \\ \pi &\geq \sqrt{3}\sqrt{2} = \sqrt{6} \, \blacksquare \end{split}$$

$$f(x) = x + i,$$
  $-\pi \le x \le +\pi,$   $i = \sqrt{-1}.$ 

SOLUÇÃO DA QUESTÃO:

$$f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{\frac{2ni\pi x}{L}};$$

$$c_n = \frac{1}{L} \int_a^b e^{-\frac{2ni\pi x}{L}} f(x) dx;$$

$$a = -\pi,$$

$$b = +\pi,$$

$$L = b - a = 2\pi;$$

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{+\pi} e^{-\frac{2ni\pi x}{2\pi}} [x+i] dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{+\pi} e^{inx} [x+i] dx;$$

$$= \frac{1}{2\pi} \int_{-\pi}^{+\pi} [\cos(nx) - i\sin(nx)] [x+i] dx$$

$$= \frac{1}{2\pi} \left\{ i \int_{-\pi}^{+\pi} \cos(nx) dx - i \int_{-\pi}^{+\pi} x \sin(nx) dx \right\};$$

$$\int_{-\pi}^{+\pi} \cos(nx) dx = 0,$$

$$\int_{-\pi}^{+\pi} x \sin(nx) dx = -\frac{2\pi(-1)^n}{n},$$

$$c_n = \frac{-i}{2\pi} \times -\frac{2\pi(-1)^n}{n} = i \frac{(-1)^n}{n}, \qquad n \neq 0.$$

O cálculo de  $c_0$  precisa ser feito separadamente:

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} [x + i] dx = i.$$

Portanto,

$$(x+i) = i \left[ 1 + \sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty} \frac{(-1)^n}{n} e^{inx} \right] \blacksquare$$

**4** [25] O Engenheiro Ambiental Matt Matcal sabe que duas variáveis ambientais **que sempre têm média zero**, x' e y', estão ligadas pela relação teórica  $y' = (x')^2$ . Por isso, ele propõe calcular um índice estatístico de dependência definido por

$$[x', y'] \equiv \frac{1}{n} \sum_{i=1}^{n} (x_i')^2 y_i',$$

onde x',  $y' \in \mathbb{R}^n$  e

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}'=0, \qquad \frac{1}{n}\sum_{i=1}^{n}y_{i}'=0.$$

Verifique se [x', y'] é um produto interno legítimo.

### SOLUÇÃO DA QUESTÃO:

Para x',  $y' \in \mathbb{R}^n$  as propriedades de um produto interno são

$$\langle x', y' \rangle = \langle y', x' \rangle,$$

$$\langle x', \alpha y' \rangle = \alpha \langle x' y' \rangle$$

$$\langle x', y' + z' \rangle = \langle x', y' \rangle + \langle x', z' \rangle,$$

$$\langle x', x' \rangle > 0, \qquad x' \neq 0,$$

$$\langle x', x' \rangle = 0, \qquad x' = 0.$$

Verifiquemos a primeira:

$$[x', y'] = \frac{1}{n} \sum_{i=1}^{n} (x_i')^2 y_i'$$

$$\neq \frac{1}{n} \sum_{i=1}^{n} (y_i')^2 x_i' = [y', x'],$$

e portanto o índice de Matt não é um produto interno legítimo

TEA010 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P02B, 15 set 2023

Prof. Nelson Luís Dias

# Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: \_\_\_\_\_

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

**1** [25] Se  $f(x) = 1, 0 < x \le 1$ , obtenha a série de Fourier da extensão ímpar de f(x) no intervalo  $-1 \le x \le 1$ .

#### SOLUÇÃO DA QUESTÃO:

A extensão ímpar é

$$f_I(x) = \begin{cases} 1, & 0 < x \le 1, \\ -1, & -1 \le x < 0. \end{cases}$$

No intervalo [-1, 1], com comprimento L = 2, uma base para as funções ímpares é formada pelo conjunto

$$\left\{\operatorname{sen}\frac{2n\pi x}{L}\right\}, n=1,2,3,\ldots$$

Segue-se o de sempre:

$$f_I(x) = \sum_{n=1}^{\infty} B_n \operatorname{sen} n\pi x,$$

$$f_I(x) \operatorname{sen} m\pi x = \sum_{n=1}^{\infty} B_n \operatorname{sen} n\pi x \operatorname{sen} m\pi x,$$

$$\int_{-1}^{1} f_I(x) \operatorname{sen} m\pi x \, \mathrm{d}x = \sum_{n=1}^{\infty} B_n \int_{-1}^{1} \operatorname{sen} n\pi x \operatorname{sen} m\pi x \, \mathrm{d}x$$

$$2 \int_{0}^{1} \operatorname{sen} m\pi x \, \mathrm{d}x = B_m \int_{-1}^{1} [\operatorname{sen} m\pi x]^2 \, \mathrm{d}x$$

$$\frac{2}{\pi m} [1 - (-1)^m] = B_m \blacksquare$$

**2** [25] O processo de ortogonalização de Gram-Schmidt: dado um conjunto de n vetores linearmente independentes em  $\mathbb{R}^n$ ,  $V = \{v_1, v_2, \dots, v_n\}$ , é possível obter um conjunto  $F = \{f_1, f_2, \dots, f_n\}$  de vetores ortogonais entre si, e  $E = \{e_1, e_2, \dots, e_n\}$  de vetores ortonormais, com o seguinte algoritmo:

$$f_{1} = v_{1}$$

$$e_{1} = \frac{1}{|f_{1}|} f_{1},$$

$$f_{2} = v_{2} - (v_{2} \cdot e_{1}) e_{1},$$

$$e_{2} = \frac{1}{|f_{2}|} f_{2},$$

$$f_{3} = v_{3} - (v_{3} \cdot e_{1}) e_{1} - (v_{3} \cdot e_{2}) e_{2},$$

$$\vdots$$

$$\vdots$$

$$f_{k} = v_{k} - \sum_{i=1}^{k-1} (v_{k} \cdot e_{i}) e_{i}$$

$$e_{k} = \frac{1}{|f_{k}|} f_{k},$$

até k = n. Usando a última equação acima, e o fato de que  $e_i \cdot e_l = \delta_{il}$  para i e l entre 1 e k - 1, mostre que

$$\boldsymbol{f}_k \boldsymbol{\cdot} \boldsymbol{e}_l = 0, \forall l \in \{1, 2, \dots, k-1\}.$$

$$(f_k \cdot e_l) = \left( \left[ v_k - \sum_{i=1}^{k-1} (v_k \cdot e_i) e_i \right] \cdot e_l \right)$$

$$= (v_k \cdot e_l) - \sum_{i=1}^{k-1} (v_k \cdot e_i) \underbrace{(e_i \cdot e_l)}_{\delta_{il}}$$

$$= (v_k \cdot e_l) - (v_k \cdot e_l) = 0 \blacksquare$$

$$\int x^2 e^{kx} dx = \frac{1}{k^3} \left[ \left( k^2 x^2 - 2kx + 2 \right) e^{kx} \right],$$

a) [10] obtenha a série de Fourier complexa de

$$f(x) = x^2, \qquad 0 \le x \le 1;$$

b) [15] agora utilize a igualdade de Parseval,

$$\frac{1}{L} \int_{a}^{b} |f(x)|^{2} dx = \sum_{n=-\infty}^{+\infty} |c_{n}|^{2}$$

para obter o valor de

$$\sum_{n=1}^{\infty} \frac{1}{\pi^2 n^2} + \frac{1}{\pi^4 n^4}.$$

SOLUÇÃO DA QUESTÃO:

$$f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{\frac{2ni\pi x}{L}};$$

$$c_n = \frac{1}{L} \int_a^b e^{-\frac{2ni\pi x}{L}} f(x) dx;$$

$$a = 0,$$

$$b = 1,$$

$$L = b - a = 1;$$

$$c_n = \frac{1}{1} \int_0^1 x^2 e^{-\frac{2ni\pi x}{L}} dx$$

$$= \frac{(k^2 - 2k + 2)e^k}{k^3} - \frac{2}{k^3};$$

$$k = -2\pi i n \Rightarrow e^k = 1;$$

$$c_n = \frac{(-2\pi n i)^2 - 2(-2\pi n i)}{(-2\pi n i)^3}$$

$$= \frac{4\pi^2 n^2 i^2 + 4\pi n i}{-8\pi^3 n^3 i^3}$$

$$= \frac{\pi^2 n^2 i^2 + \pi n i}{2\pi^3 n^3 i}$$

$$= \frac{i}{2\pi n} + \frac{1}{2\pi^2 n^2}, \qquad n \neq 0.$$

Claramente, o cálculo de  $c_0$  precisa ser feito separadamente:

$$c_0 = \int_0^1 x^2 dx = \frac{1}{3}.$$

Para obter a igualdade de Parseval neste caso,

$$\int_{0}^{1} x^{4} dx = \frac{1}{5};$$

$$|c_{0}|^{2} = \frac{1}{9};$$

$$|c_{n}|^{2} = \frac{1}{4\pi^{2}n^{2}} + \frac{1}{4\pi^{4}n^{4}};$$

$$\frac{1}{5} = \frac{1}{9} + \sum_{\substack{n=-\infty \\ n\neq 0}}^{\infty} \frac{1}{4\pi^{2}n^{2}} + \frac{1}{4\pi^{4}n^{4}}$$

$$\frac{4}{45} = \sum_{\substack{n=-\infty \\ n\neq 0}}^{\infty} \frac{1}{4\pi^{2}n^{2}} + \frac{1}{4\pi^{4}n^{4}}$$

$$\frac{16}{45} = \sum_{\substack{n=-\infty \\ n\neq 0}}^{\infty} \frac{1}{\pi^{2}n^{2}} + \frac{1}{\pi^{4}n^{4}}$$

$$\frac{16}{45} = 2 \sum_{n=1}^{\infty} \frac{1}{\pi^{2}n^{2}} + \frac{1}{\pi^{4}n^{4}}$$

$$\frac{8}{45} = \sum_{n=1}^{\infty} \frac{1}{\pi^{2}n^{2}} + \frac{1}{\pi^{4}n^{4}}$$

**4** [25] Obtenha a transformada de Fourier de

$$f(x) = x^2 e^{-|x|},$$

sabendo que

$$\int_0^{+\infty} x^2 e^{-|x|} \cos(bx) \, \mathrm{d}x = -\frac{2(3b^2 - 1)}{(b^2 + 1)^3}.$$

# SOLUÇÃO DA QUESTÃO:

Note que f(x) é uma função par.

$$\widehat{f}(k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} x^2 e^{-|x|} e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} x^2 e^{-|x|} \left[ \cos(kx) - i \sin(kx) \right] dx$$

$$= \frac{2}{2\pi} \int_{0}^{+\infty} x^2 e^{-|x|} \cos(kx) dx$$

$$= -\frac{1}{\pi} \frac{2(3k^2 - 1)}{(k^2 + 1)^3} \blacksquare$$

TEA010 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P03A, 29 set 2023

Prof. Nelson Luís Dias

### Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: \_\_\_\_\_

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO  $\underline{A}$ .

1 [25] Sabendo que

$$\frac{a^2}{x^2 + a^2} \Leftrightarrow \frac{a}{2} e^{-|ka|}$$

formam um par de transformada-antitransformada de Fourier, encontre

$$\mathscr{F}^{-1}\left\{\frac{a^2}{4}\mathrm{e}^{-2|ka|}\right\}.$$

Deixe sua resposta na forma de uma integral de convolução.

$$\begin{split} \mathscr{F}\{f*f\} &= 2\pi \widehat{f}(k)\widehat{f}(k),\\ \mathscr{F}^{-1}\left\{[\widehat{f}(k)]^2\right\} &= \frac{1}{2\pi}f*f,\\ \mathscr{F}^{-1}\left\{\frac{a^2}{4}\mathrm{e}^{-2|ka|}\right\} &= \frac{1}{2\pi}\int_{-\infty}^{+\infty}\left[\frac{a^2}{\xi^2+a^2}\right]\left[\frac{a^2}{(x-\xi)^2+a^2}\right]\mathrm{d}\xi \,\blacksquare \end{split}$$

**2** [25] Se

$$[A] = \begin{bmatrix} 1 & 0 & 4+3i \\ 1-i & 2 & 3 \\ 1+i & i & 3 \end{bmatrix},$$

obtenha a matriz adjunta  $[A^{\#}]$ .

$$[A^{\#}] = \begin{bmatrix} 1 & 0 & 4 - 3i \\ 1 + i & 2 & 3 \\ 1 - i & -i & 3 \end{bmatrix}^{\top}$$
$$= \begin{bmatrix} 1 & 1 + i & 1 - i \\ 0 & 2 & -i \\ 4 - 3i & 3 & 3 \end{bmatrix} \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = \frac{f(x)}{x}, \qquad y(0) = 0.$$

SOLUÇÃO DA QUESTÃO:

$$\frac{\mathrm{d}y}{\mathrm{d}\xi} + \frac{y}{\xi} = \frac{f(\xi)}{\xi},$$
 
$$G(x,\xi)\frac{\mathrm{d}y}{\mathrm{d}\xi} + \frac{G(x,\xi)y}{\xi} = \frac{G(x,\xi)f(\xi)}{\xi},$$
 
$$\int_{\xi=0}^{\infty} G(x,\xi)\frac{\mathrm{d}y}{\mathrm{d}\xi}\,\mathrm{d}\xi + \int_{\xi=0}^{\infty} \frac{G(x,\xi)y}{\xi}\,\mathrm{d}\xi = \int_{\xi=0}^{\infty} \frac{G(x,\xi)f(\xi)}{\xi}\,\mathrm{d}\xi,$$
 
$$G(x,\xi)y(\xi)\bigg|_{0}^{\infty} - \int_{\xi=0}^{\infty} y\frac{\mathrm{d}G}{\mathrm{d}\xi}\,\mathrm{d}\xi + \int_{\xi=0}^{\infty} \frac{G(x,\xi)y}{\xi}\,\mathrm{d}\xi = \int_{\xi=0}^{\infty} \frac{G(x,\xi)f(\xi)}{\xi}$$

Nesse ponto, como sempre, imponho  $\lim_{\xi\to\infty} G(x,\xi)=0$ ; note que a condição inicial é y(0)=0, o que simplifica um pouco as coisas. Prosseguindo,

$$\begin{split} \int_{\xi=0}^{\infty} y \left[ -\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} + \frac{G(x,\xi)}{\xi} \right] \, \mathrm{d}\xi &= \int_{\xi=0}^{\infty} \frac{G(x,\xi)f(\xi)}{\xi} \, \mathrm{d}\xi, \\ -\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} + \frac{G(x,\xi)}{\xi} &= \delta(\xi-x). \end{split}$$

A forma mais rápida de obter G é pelo método da variação das constantes. Procuro a solução da equação homogênea:

$$-\frac{\mathrm{d}h}{\mathrm{d}\xi} + \frac{h}{\xi} = 0,$$

$$\frac{\mathrm{d}h}{\mathrm{d}\xi} = \frac{h}{\xi},$$

$$\frac{\mathrm{d}h}{h} = \frac{d\xi}{\xi},$$

$$h(\xi) = A\xi,$$

(onde A é uma constante em relação a  $\xi$ ), e tento

$$G(x,\xi) = A(x,\xi)\xi,$$

$$-\left[\xi \frac{\mathrm{d}A}{\mathrm{d}\xi} + A\right] + \frac{A\xi}{\xi} = \delta(\xi - x),$$

$$-\xi \frac{\mathrm{d}A}{\mathrm{d}\xi} = \delta(\xi - x),$$

$$\frac{\mathrm{d}A}{\mathrm{d}\xi} = -\frac{\delta(\xi - x)}{\xi},$$

$$\int_{u=0}^{\xi} \frac{\mathrm{d}A}{\mathrm{d}u} \, \mathrm{d}u = -\int_{u=0}^{\xi} \frac{\delta(u - x)}{u} \, \mathrm{d}u$$

$$A(x,\xi) = A(x,0) - \frac{H(\xi - x)}{x},$$

$$G(x,\xi) = \left[A(x,0) - \frac{H(\xi - x)}{x}\right] \xi.$$

Finalmente.

$$0 = G(x, \infty) = [A(x, 0) - 1/x] \infty \Longrightarrow$$

$$A(x, 0) = 1/x,$$

$$G(x, \xi) = [1 - H(\xi - x)] \frac{\xi}{x} \blacksquare$$

4 [25] As raízes da equação característica de uma EDO de coeficientes constantes, homogênea, de ordem 2, são

$$r_1 = -1 + 2\sqrt{\lambda},$$

$$r_2 = -1 - 2\sqrt{\lambda}.$$

Escreva a EDO na forma de uma equação diferencial de Sturm-Liouville, onde  $\lambda$  é o autovalor. Observação: por uma questão de consistência com a Teoria de Sturm-Liouville, a função-peso w(x) que multiplica  $\lambda y$  na Equação de Sturm-Liouville deve ser positiva.

#### SOLUÇÃO DA QUESTÃO:

A equação característica é

$$(r - (-1 + 2\sqrt{\lambda}))(r - (-1 - 2\sqrt{\lambda})) = r^2 + 2r + 1 - 4\lambda.$$

A equação diferencial é

$$0 = y'' + 2y' + (1 - 4\lambda)y = \frac{d}{dx} \left( p(x) \frac{dy}{dx} \right) + q(x)y + \lambda w(x)y,$$
  

$$0 = y'' + 2y' + (1 - 4\lambda)y = py'' + p'y' + qy + \lambda wy,$$
  

$$0 = -\frac{1}{4}y'' - \frac{1}{2}y' - \frac{1}{4}y + \lambda y = \frac{p}{w}y'' + \frac{p'}{w}y' + \frac{q}{w}y + \lambda y$$

Obtemos um conjunto de 3 equações diferenciais:

$$\frac{q}{w} = -\frac{1}{4},$$

$$\frac{p'}{w} = -\frac{1}{2},$$

$$\frac{p}{w} = -\frac{1}{4},$$

donde p = q, e

$$\frac{dp}{dx} = -\frac{1}{2}w = \frac{1}{2} \times 4p = 2p,$$

$$\frac{dp}{p} = 2dx,$$

$$p(x) = Ce^{2x}.$$

A constante C é totalmente arbitrária, exceto pelo seu sinal que deve ser escolhido de tal forma que w > 0. Sem perda de generalidade, portanto, faça C = -1. Então,  $w = 4e^{2x}$ , e a equação de Sturm Liouville é

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( -\mathrm{e}^{2x} \frac{\mathrm{d}y}{\mathrm{d}x} \right) - \mathrm{e}^{2x} y + 4\mathrm{e}^{2x} \lambda y = 0 \blacksquare$$

TEA010 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR

P03B, 06 out 2023 Prof. Nelson Luís Dias

### Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: \_\_\_\_\_

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO  $\underline{A}$ .

# **1** [25] Mostre que

$$\mathscr{F}\left\{\frac{\mathrm{sen}(x)}{x}\right\} = \frac{1}{2}\left[H(k+1) - H(k-1)\right].$$

Sugestões (fatos você pode usar sem demonstrar):

a) 
$$\frac{\operatorname{sen}(x)}{x} \notin \operatorname{par} \implies \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\operatorname{sen}(x)}{x} e^{-\mathrm{i}kx} dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\operatorname{sen}(x)}{x} \cos(kx) dx.$$

b)

$$sen(a + b) = sen(a) cos(b) + sen(b) cos(a),$$
  

$$sen(a - b) = sen(a) cos(b) - sen(b) cos(a),$$

$$\frac{1}{2}\left[\operatorname{sen}(a+b) + \operatorname{sen}(a-b)\right] = \operatorname{sen}(a)\cos(b).$$

Agora faça a = x, b = kx na integral da transformada.

#### c) Finalmente,

$$\int_{-\infty}^{+\infty} \frac{\sin(cx)}{x} dx = \begin{cases} 0, & c = 0, \\ +\pi & c > 0, \\ -\pi & c < 0, \end{cases}$$
$$= \pi(2H(c) - 1)$$

onde H(x) é a função de Heaviside, e H(0) = 1/2.

$$\mathcal{F}\left\{\frac{\sin(x)}{x}\right\} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\sin(x)}{x} e^{-ikx} dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\sin(x)}{x} \cos(kx) dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{2x} \left[ \sin(x+kx) + \sin(x-kx) \right] dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{2x} \left[ \sin(kx+x) - \sin(kx-x) \right] dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{2x} \left[ \sin((k+1)x) - \sin((k-1)x) \right] dx$$

$$= \frac{1}{4\pi} \left[ \int_{-\infty}^{+\infty} \frac{\sin((k+1)x)}{x} dx - \int_{-\infty}^{+\infty} \frac{\sin((k-1)x)}{x} dx \right]$$

$$= \frac{1}{4\pi} \left[ \pi (2H(k+1) - 1) - \pi (2H(k-1) - 1) \right]$$

$$= \frac{1}{2} \left[ H(k+1) - H(k-1) \right] \blacksquare$$

2 [25] Usando a desigualdade de Schwarz e o produto interno usual no espaço das funções complexas quadrado-integráveis, e supondo que todas as integrais convergem, mostre que

$$\int_{-\infty}^{+\infty} |\xi| |f(\xi)| \left| \frac{\mathrm{d}f}{\mathrm{d}\xi} \right| \, \mathrm{d}\xi \leq \left[ \int_{-\infty}^{+\infty} |\xi^2| f(\xi)|^2 \, \mathrm{d}\xi \right]^{1/2} \left[ \int_{-\infty}^{+\infty} \left| \frac{\mathrm{d}f}{\mathrm{d}\xi} \right|^2 \, \, \mathrm{d}\xi \right]^{1/2}$$

onde  $\xi \in \mathbb{R}$  e  $f(\xi) \in \mathbb{C}$ . As funções que devem ser utilizadas na desigualdade de Schwarz são  $u(x) = |\xi f(\xi)|$  e  $v(x) = |\mathrm{d}f/\mathrm{d}\xi|$ . Mostre todos os passos. Não omita nenhum detalhe.

#### SOLUÇÃO DA QUESTÃO:

A desigualdade de Schwarz é

$$\begin{split} |\langle x, \boldsymbol{y} \rangle| &\leq \sqrt{\langle x, \boldsymbol{x} \rangle} \sqrt{\langle \boldsymbol{y}, \boldsymbol{y} \rangle}; \\ u(\xi) &= |\xi f(\xi)|; \\ v(\xi) &= \left| \frac{\mathrm{d}f}{\mathrm{d}\xi} \right|; \\ \left| \int_{-\infty}^{+\infty} u^*(x) v(x) \, \mathrm{d}x \right| \leq \left[ \int_{-\infty}^{+\infty} u^*(x) u(x) \, \mathrm{d}x \right]^{1/2} \left[ \int_{-\infty}^{+\infty} v^*(x) v(x) \, \mathrm{d}x \right]^{1/2}, \\ \left| \int_{-\infty}^{+\infty} |\xi f(\xi)| \left| \frac{\mathrm{d}f}{\mathrm{d}\xi} \right| \, \mathrm{d}x \right| \leq \left[ \int_{-\infty}^{+\infty} |\xi f(\xi)|^2 \, \mathrm{d}x \right]^{1/2} \left[ \int_{-\infty}^{+\infty} \left| \frac{\mathrm{d}f}{\mathrm{d}\xi} \right|^2 \, \mathrm{d}x \right]^{1/2}, \\ \int_{-\infty}^{+\infty} |\xi| \, |f(\xi)| \left| \frac{\mathrm{d}f}{\mathrm{d}\xi} \right| \, \mathrm{d}x \leq \left[ \int_{-\infty}^{+\infty} |\xi^2| f(\xi)|^2 \, \mathrm{d}x \right]^{1/2} \left[ \int_{-\infty}^{+\infty} \left| \frac{\mathrm{d}f}{\mathrm{d}\xi} \right|^2 \, \mathrm{d}x \right]^{1/2} \, \blacksquare \end{split}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} - 2xy = \mathrm{sen}(x), \ y(0) = 3.$$

### SOLUÇÃO DA QUESTÃO:

Multiplico por  $G(x, \xi)$  e integro de 0 a infinito:

$$\int_{\xi=0}^{\infty} G(x,\xi) \left[ \frac{\mathrm{d}y}{\mathrm{d}\xi} - 2\xi y \right] \, \mathrm{d}\xi = \int_{0}^{\infty} G(x,\xi) \, \mathrm{sen} \, \xi \, \mathrm{d}\xi$$

Integrando por partes,

$$G(x,\xi)y(\xi)\Big|_{\xi=0}^{\infty} + \int_{\xi=0}^{\infty}y(\xi)\left[-\frac{\partial G}{\partial \xi} - 2\xi G\right]\,\mathrm{d}\xi = \int_{0}^{\infty}G(x,\xi)\sin\xi\,\mathrm{d}\xi$$

$$\lim_{\xi \to \infty} G(x, \xi) = 0 \Rightarrow$$

$$-G(x, 0)y(0) + \int_{\xi=0}^{\infty} y(\xi) \left[ -\frac{\partial G}{\partial \xi} - 2\xi G \right] d\xi = \int_{0}^{\infty} G(x, \xi) \operatorname{sen} \xi d\xi$$

$$-\frac{\partial G}{\partial \xi} - 2\xi G = \delta(\xi - x).$$

$$\frac{dG}{d\xi} + 2\xi G = -\delta(\xi - x).$$

Agora, G = uv, e

$$u\left[\frac{\mathrm{d}v}{\mathrm{d}\xi} + 2\xi v\right] + v\frac{\mathrm{d}u}{\mathrm{d}\xi} = -\delta(\xi - x)$$

$$\frac{\mathrm{d}v}{\mathrm{d}\xi} = -2\xi v$$

$$\frac{\mathrm{d}v}{2v} = -2\xi$$

$$\ln\left(\frac{v}{v_0(x)}\right) = -\xi^2$$

$$v = v_0(x)\exp(-\xi^2)$$

$$\frac{\mathrm{d}u}{\mathrm{d}\xi} = -\frac{\exp(\xi^2)}{v_0(x)}\delta(\xi - x)$$

$$u(\xi) = u_0(x) - \int_{\eta=0}^{\xi} \frac{\exp(\eta^2)}{v_0(x)}\delta(\eta - x)\,\mathrm{d}\eta$$

$$= u_0(x) - \frac{H(\xi - x)\exp(x^2)}{v_0(x)} \Rightarrow$$

$$G(x, \xi) = \left[u_0(x)v_0(x) - H(\xi - x)\exp(x^2)\right]\exp(-\xi^2)$$

$$= \left[G_0(x) - H(\xi - x)\exp(x^2)\right]\exp(-\xi^2).$$

Mas

$$\lim_{\xi \to \infty} G(x, \xi) = 0 \Rightarrow G_0(x) = \exp(x^2)$$
$$G(x, \xi) = [1 - H(\xi - x)] \exp(x^2 - \xi^2) \blacksquare$$

$$y'' + 4y' + (4 - 9\lambda)y = 0, y(0) = y(L) = 0.$$

SOLUÇÃO DA QUESTÃO:

Se  $\lambda > 0$ :

$$y(x) = c_1 e^{(-2+3\sqrt{\lambda})x} + c_2 e^{(-2-3\sqrt{\lambda})x}$$
.

As condições de contorno levam a

$$c_1 + c_2 = 0,$$
  
$$c_1 e^{(-2+3\sqrt{\lambda})L} + c_2 e^{(-2-3\sqrt{\lambda})L} = 0,$$

donde  $c_1 = c_2 = 0$ , e  $\lambda > 0$  não é autovalor.

Se  $\lambda = 0$ :

$$y(x) = (c_1 + c_2 x)e^{-2x}$$
.

As condições de contorno levam a

$$c_1 = 0,$$
  
$$c_2 L e^{-2L} = 0,$$

donde  $c_1 = c_2 = 0$ , e  $\lambda = 0$  não é autovalor.

Se  $\lambda$  < 0:

$$y(x) = e^{-2x} \left( c_1 \operatorname{sen}(3\sqrt{-\lambda}x) + c_2 \cos(3\sqrt{-\lambda}x) \right).$$

As condições de contorno levam a

$$c_2 = 0,$$

$$e^{-2L}c_1 \operatorname{sen}(3\sqrt{-\lambda}L) = 0.$$

Portanto,

$$3\sqrt{-\lambda}L = n\pi,$$

$$\lambda_n = -\frac{\pi^2 n^2}{9L^2}, \qquad n = 1, 2, 3, \dots$$

As autofunções correspondentes são

$$y_n(x) = e^{-2x} \operatorname{sen} \frac{n\pi x}{L}, \qquad n = 1, 2, 3, \dots$$

TEA010 Matemática Aplicada II

Curso de Engenharia Ambiental

Departamento de Engenharia Ambiental, UFPR

P04A, 17 nov 2023

Prof. Nelson Luís Dias

#### Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: \_\_\_\_\_

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO  $\underline{A}$ .

# 1 [40] Considere o problema de Sturm-Liouville

$$\frac{d}{dx} \left[ e^{-x} \frac{dy}{dx} \right] + e^{-x} y(x) + \lambda e^{-x} y(x) = 0, \qquad y(0) = 0, \ y(1) = 0.$$

- a) [10] Qual é o intervalo dos valores possíveis de  $\lambda$ ?
- b) [10] Obtenha os autovalores  $\lambda_n$ .
- c) [10] Obtenha as autofunções  $y_n$ .
- d) [10] Prove que  $\langle y_m(x), y_n(x) \rangle = 0$ ,  $m \neq n$ , ou seja: que as autofunções são ortogonais. **Observação:** você vai precisar de

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b),$$
  

$$\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b).$$

### SOLUÇÃO DA QUESTÃO:

a) Inicialmente, note que  $p(x) = e^{-x}$ ,  $q(x) = e^{-x}$  e  $w(x) = e^{-x}$ . A EDO é

$$e^{-x} \frac{d^{2}y}{dx^{2}} - e^{-x} \frac{dy}{dx} + e^{-x} (1 + \lambda) y(x) = 0;$$
$$\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} + (1 + \lambda) y(x) = 0.$$

A equação característica é

$$r^2-r+(1+\lambda)=0;$$
 
$$r=\frac{1\pm\sqrt{1-4(1+\lambda)}}{2}$$

Inicialmente, suponha  $r \in \mathbb{R}$ ; então,

$$1 - 4(1 + \lambda) \ge 0,$$
  

$$4(1 + \lambda) \le 1,$$
  

$$1 + \lambda \le \frac{1}{4},$$
  

$$\lambda \le -\frac{3}{4}.$$

Se  $\lambda = -3/4$ , temos 2 raízes repetidas r = 1/2, e

$$y(x) = c_1 e^{x/2} + c_2 x e^{x/2}$$
.

com

$$y(0) = 0 \implies c_1 = 0;$$
  
 $y(1) = 0 \implies c_2 = 0.$ 

Logo,  $y(x) \equiv 0$ , e  $\lambda = -3/4$  não pode ser autovalor. Se  $\lambda < -3/4$ , faça

$$\alpha = 1/2 > 0,$$

$$\beta = \frac{\sqrt{1 - 4(1 + \lambda)}}{2} > 0;$$

$$y(x) = e^{x/2} [A \cosh(\beta x) + B \sinh(\beta x)];$$

$$y(0) = 0 \implies A = 0;$$

$$y(1) = 0 \implies e^{1/2} B \sinh(\beta) = 0 \implies B = 0,$$

$$y(x) \equiv 0.$$

e novamente  $\lambda$  não pode ser autovalor.

Finalmente, suponha  $\lambda > -3/4$ ; então as raízes são complexas:

$$\alpha = 1/2 > 0,$$

$$\beta = \frac{\sqrt{-\left[1 - 4(1 + \lambda)\right]}}{2} > 0;$$

$$r = \alpha \pm i\beta;$$

$$y(x) = e^{x/2} \left[ A\cos(\beta x) + B\sin(\beta x) \right];$$

$$y(0) = 0 \implies A = 0;$$

$$y(1) = 0 \implies e^{1/2} B\sin(\beta) = 0 \implies \sin(\beta) = 0.$$

Portanto, o intervalo de valores possíveis de  $\lambda$  é

$$\lambda > -3/4$$
.

b) Como nós supusemos  $\beta > 0$ , devemos ter

$$\beta_n = \frac{\sqrt{-\left[1 - 4(1 + \lambda_n)\right]}}{2} = n\pi, \qquad n = 1, 2, 3, \dots$$

$$\frac{-\left[1 - 4(1 + \lambda_n)\right]}{4} = n^2 \pi^2,$$

$$-\left[1 - 4(1 + \lambda_n)\right] = 4n^2 \pi^2,$$

$$1 - 4(1 + \lambda_n) = -4n^2 \pi^2,$$

$$-4(1 + \lambda_n) = -1 - 4n^2 \pi^2,$$

$$(1 + \lambda_n) = \frac{1 + 4n^2 \pi^2}{4},$$

$$\lambda_n = \frac{-3 + 4n^2 \pi^2}{4}, \qquad n = 1, 2, 3, \dots$$

c) As autofunções correspondentes são

$$y_n = e^{x/2} \operatorname{sen}(n\pi x) \blacksquare$$

d) Dadas duas autofunções  $y_m(x)$  e  $y_n(x)$ , o produto interno com  $w(x) = e^{-x}$  é

$$\begin{split} \langle y_m, y_n \rangle &= \int_0^1 y_m(x) y_n(x) w(x) \, \mathrm{d}x \\ &= \int_0^1 \mathrm{e}^{x/2} \, \mathrm{sen}(m\pi x) \, \mathrm{e}^{x/2} \, \mathrm{sen}(n\pi x) \, \mathrm{e}^{-x} \, \mathrm{d}x \\ &= \int_0^1 \mathrm{sen}(m\pi x) \, \mathrm{sen}(n\pi x) \, \mathrm{d}x \\ &= \frac{1}{2} \int_0^1 \left[ \cos((m-n)\pi x) - \cos((m+n)\pi x) \right] \, \mathrm{d}x \\ &= \frac{1}{2(m-n)} \int_0^1 \cos((m-n)\pi x) \, (m-n) \mathrm{d}x - \frac{1}{2(m+n)} \int_0^1 \cos((m+n)\pi x) \, (m+n) \mathrm{d}x \\ &= \frac{1}{2(m-n)} \, \mathrm{sen}((m-n)\pi x) \Big|_0^1 - \frac{1}{2(m+n)} \, \mathrm{sen}((m+n)\pi x) \Big|_0^1 \\ &= \frac{1}{2(m-n)} \, \mathrm{sen}((m-n)\pi) - \frac{1}{2(m+n)} \, \mathrm{sen}((m+n)\pi) = 0 \, \blacksquare \end{split}$$

**2** [30] Calcule a transformada de Fourier de

$$f(x) = \begin{cases} 1 - |x|, & |x| \le 1, \\ 0, & |x| > 1. \end{cases}$$

$$\mathscr{F}{f(x)}(k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-1}^{+1} f(x) [\cos(kx) - i \sin(kx)] dx$$

$$= \frac{1}{\pi} \int_{0}^{+1} f(x) \cos(kx) dx \qquad \text{(pois } f \notin \text{par)}$$

$$= \frac{1}{\pi} \int_{0}^{+1} [1 - x] \cos(kx) dx$$

$$= \frac{1}{\pi} \times \frac{1 - \cos(k)}{k^2} \blacksquare$$

# 3 [30] Utilizando o método das características, resolva

$$\frac{\partial \phi}{\partial t} + e^t \frac{\partial \phi}{\partial x} = x, \qquad \phi(x, 0) = f(x).$$

# SOLUÇÃO DA QUESTÃO:

Faça  $\phi(x, t) = F(s)$  sobre x = X(s) e t = T(s):

$$\phi(X(s), T(s)) = F(s);$$

$$\frac{dF}{ds} = \frac{\partial \phi}{\partial t} \frac{dT}{ds} + \frac{\partial \phi}{\partial x} \frac{dX}{ds};$$

$$\frac{dT}{ds} = 1 \Rightarrow T(s) = \underbrace{T(0)}_{\equiv 0} + s,$$

$$\frac{dX}{ds} = e^t = e^s,$$

$$\int_{X(0)}^{X(s)} d\xi = \int_0^s e^\tau d\tau,$$

$$X(s) - X(0) = e^s - 1 \Rightarrow X(0) = X(s) + 1 - e^s.$$

Mas

$$\frac{\partial \phi}{\partial t} + e^{t} \frac{\partial \phi}{\partial x} = x,$$

$$\frac{dF}{ds} = X(0) + e^{s} - 1,$$

$$F(s) - F(0) = \int_{\tau=0}^{s} [X(0) + e^{\tau} - 1] d\tau$$

$$F(s) = F(0) + (X(0) - 1)s + (e^{s} - 1)$$

$$F(0) = f(X(0)) = f(x + 1 - e^{t});$$

$$\phi(x, t) = F(s) = f(x + 1 - e^{t}) + (x + 1 - e^{t} - 1)t + (e^{t} - 1)$$

$$\phi(x, t) = f(x + 1 - e^{t}) + (x - e^{t})t + (e^{t} - 1) \blacksquare$$

TEA010 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P04B, 24 nov 2023

P04B, 24 nov 2023 Prof. Nelson Luís Dias

# Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: \_\_\_\_\_

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO  $\underline{A}$ .

 ${f 1}$  [25] Mostre que a integral que surge em problemas de Sturm-Liouville,

$$\int_a^b f^*(x)g(x)w(x)\,\mathrm{d}x$$

onde f e g são funções complexas quadrado-integráveis de uma variável real, e w(x) > 0 é uma função real, definem um produto interno legítimo.

#### SOLUÇÃO DA QUESTÃO:

(i)

$$\langle f, g \rangle = \int_a^b f^*(x)g(x)w(x) dx$$
$$= \left[ \int_a^b f(x)g^*(x)w(x) dx \right]^*$$
$$= \left[ \int_a^b g^*(x)f(x)w(x) dx \right]^* = \langle g, f \rangle^*$$

(ii)

$$\langle f, g + h \rangle = \int_a^b f^*(x) [g(x) + h(x)] w(x) dx$$

$$= \int_a^b f^*(x) g(x) w(x) dx + \int_a^b f^*(x) h(x) w(x) dx$$

$$= \langle f, g \rangle + \langle f, h \rangle.$$

(iii)

$$\langle f, \alpha g \rangle = \int_{a}^{b} f^{*}(x) \alpha g(x) w(x) dx$$
$$= \alpha \left[ \int_{a}^{b} f^{*}(x) g(x) w(x) dx \right]$$
$$= \alpha \langle f, g \rangle.$$

(iv)

$$\langle f, f \rangle = \int_a^b f^*(x) f(x) w(x) dx$$
$$= \int_a^b |f(x)|^2 w(x) dx > 0,$$

desde que f(x) seja nula no máximo em um conjunto enumerável de pontos dentro de [a, b], ou seja, desde que " $f(x) \not\equiv 0$ " em [a, b].

(v)

$$f(x) \equiv 0 \Rightarrow \int_a^b f^*(x)f(x)w(x) dx = 0$$

A rigor, esta última deve ser lida: se f(x) for nula exceto em um conjunto enumerável de pontos dentro de [a,b], então a integral é nula.

**2** [25] Se  $f(x) = (x - 1/2)^2$ ,  $0 \le x \le 1$ , então pode-se mostrar que

$$\int_0^1 e^{-2\pi i nx} f(x) dx = \frac{1}{2\pi^2 n^2}, \ n \neq 0.$$

Calcule

$$\sum_{n=1}^{\infty} \frac{1}{n^4}.$$

Sugestão: use a igualdade de Parseval para séries de Fourier complexas,

$$\frac{1}{L} \int_{a}^{b} |f(x)|^{2} dx = \sum_{n=-\infty}^{+\infty} |c_{n}|^{2}.$$

### SOLUÇÃO DA QUESTÃO:

Inicialmente, note que a integral não vale para n = 0; mas

$$c_0 = \int_0^1 (x - 1/2)^2 dx = \frac{1}{12}.$$

Em seguida, note também que a integral é na verdade o coeficiente de Fourier complexo de f(x) para  $n \neq 0$ :

$$c_n = \frac{1}{L} \int_a^b e^{-\frac{2\pi i n x}{L}} f(x) dx;$$

$$a = 0,$$

$$b = 1,$$

$$L = b - a = 1,$$

$$c_n = \int_0^1 e^{-2\pi i n x} f(x) dx = \frac{1}{2\pi^2 n^2}.$$

Agora, a identidade de Parseval para os coeficientes da série de Fourier complexa é

$$\frac{1}{L} \int_{a}^{b} |f(x)|^{2} dx = \sum_{n=-\infty}^{+\infty} |c_{n}|^{2};$$

$$\int_{0}^{1} |f(x)|^{2} dx = \sum_{n=-\infty}^{+\infty} |c_{n}|^{2};$$

$$\int_{0}^{1} [(x-1/2)^{2}]^{2} dx = \sum_{n=-\infty}^{+\infty} |c_{n}|^{2};$$

$$\frac{1}{80} = \sum_{n=-\infty}^{-1} |c_{n}|^{2} + c_{0}^{2} + \sum_{n=1}^{+\infty} |c_{n}|^{2}$$

$$\frac{1}{80} = \left[\frac{1}{12}\right]^{2} + 2 \sum_{n=1}^{+\infty} |c_{n}|^{2}$$

$$\frac{1}{80} - \frac{1}{144} = 2 \sum_{n=1}^{+\infty} \left[\frac{1}{2\pi^{2}n^{2}}\right]^{2}$$

$$\frac{1}{180} = \frac{2}{4\pi^{4}} \sum_{n=1}^{+\infty} \frac{1}{n^{4}}$$

$$\frac{1}{180} = \frac{1}{2\pi^{4}} \sum_{n=1}^{+\infty} \frac{1}{n^{4}}$$

$$\frac{\pi^{4}}{90} = \sum_{n=1}^{+\infty} \frac{1}{n^{4}} \blacksquare$$

# **3** [25] Sabendo que

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\sin(x)}{x} e^{-ikx} dx = \frac{1}{2} [H(k+1) - H(k-1)],$$
$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-|x|} e^{-ikx} dx = \frac{1}{\pi (k^2 + 1)},$$

onde H(x) é a função de Heaviside, calcule

$$\frac{1}{2\pi} \int_{x=-\infty}^{+\infty} {\rm e}^{-{\rm i} kx} \int_{\xi=-\infty}^{+\infty} \frac{{\rm sen}(x-\xi)}{x-\xi} {\rm e}^{-|\xi|} \, {\rm d}\xi \, {\rm d}x.$$

# SOLUÇÃO DA QUESTÃO:

Trata-se da transformada de Fourier da convolução de  $f(x) = \frac{\text{sen}(x)}{x} \text{ com } g(x) = \text{e}^{-x}$ ; mas pelo teorema da convolução,

$$\begin{split} \mathcal{F}\left[f*g\right](x) &= 2\pi \widehat{f}(k)\widehat{g}(k) \\ &= \frac{H(k+1) - H(k-1)}{k^2 + 1} \blacksquare \end{split}$$

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0, \qquad 0 \le x \le a, \ 0 \le y \le b;$$

$$\frac{\partial \phi(0, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$

$$\frac{\partial \phi(a, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$

$$\phi(x, 0) = 0, \qquad 0 \le x \le a,$$

$$\phi(x, b) = \phi_0, \qquad 0 \le x \le a.$$

### SOLUÇÃO DA QUESTÃO:

Faça  $\phi(x, y) = X(x)Y(y)$ ; então,

$$\begin{split} Y \frac{\mathrm{d}^2 X}{\mathrm{d}x^2} + X \frac{\mathrm{d}^2 Y}{\mathrm{d}y^2} &= 0, \\ \frac{1}{X} \frac{\mathrm{d}^2 X}{\mathrm{d}x^2} + \frac{1}{Y} \frac{\mathrm{d}^2 Y}{\mathrm{d}y^2} &= 0, \\ \frac{1}{X} \frac{\mathrm{d}^2 X}{\mathrm{d}x^2} &= -\frac{1}{Y} \frac{\mathrm{d}^2 Y}{\mathrm{d}y^2} &= \lambda. \end{split}$$

Claramente as condições de contorno homogênas que já estão "prontas" são

$$\frac{\partial \phi(0, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$

$$\frac{\partial \phi(a, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$

e correspondem a x = 0 e x = a. Mas

$$\begin{split} \frac{\partial \phi(0,y)}{\partial x} &= \frac{\mathrm{d}X(0)}{\mathrm{d}x} Y(y), \\ \frac{\partial \phi(a,y)}{\partial x} &= \frac{\mathrm{d}X(a)}{\mathrm{d}x} Y(y); \end{split}$$

portanto, devemos resolver o problema de Sturm-Liouville

$$\frac{dX}{dx} - \lambda X = 0, \qquad \frac{dX(0)}{dx} = 0, \quad \frac{dX(a)}{dx} = 0.$$

Se  $\lambda = +k^2 > 0$  com k > 0 (sem perda de generalidade),

$$\frac{dX}{dx} - k^2 X = 0,$$

$$r^2 - k^2 = 0,$$

$$r = \pm k,$$

$$X(x) = A \cosh(kx) + B \sinh(kx),$$

$$\frac{dX}{dx} = A \sinh(kx) + B \cosh(kx),$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow B \cosh(0) = 0 \Rightarrow B = 0;$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow A \sinh(ka) = 0 \Rightarrow A = 0,$$

e  $\lambda > 0$  não pode ser autovalor.

Se  $\lambda = 0$ ,

$$\frac{d^2X}{dx^2} = 0,$$

$$X(x) = Ax + B,$$

$$\frac{dX}{dx} = A,$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow A = 0;$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow A = 0,$$

e B pode ser qualquer. Consequentemente,  $\lambda = 0$   $\acute{e}$  um autovalor da autofunção  $X_0(x) = B$ , e sem perda de generalidade podemos usar o caso  $X_0(x) = 1$ .

Se  $\lambda = -k^2 < 0$  com k > 0 (sem perda de generalidade),

$$\frac{dX}{dx} + k^2 X = 0,$$

$$r^2 + k^2 = 0,$$

$$r = \pm ki,$$

$$X(x) = A\cos(kx) + B\sin(kx),$$

$$\frac{dX}{dx} = k[-A\sin(kx) + B\cos(kx)],$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow kB = 0 \Rightarrow B = 0,$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow -kA\sin(ka) = 0 \Rightarrow \sin(ka) = 0,$$

$$ka = n\pi,$$

$$k_n = \frac{n\pi}{a},$$

$$X_n(x) = \cos\left(\frac{n\pi x}{a}\right),$$

com A = 1 (sem perda de generalidade).

Procuremos as soluções  $Y_n(y)$  associadas. Para n > 0,

$$-\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} = \lambda_{n}Y,$$

$$-\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} = -\frac{n^{2}\pi^{2}}{a^{2}}Y,$$

$$\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} - \frac{n^{2}\pi^{2}}{a^{2}}Y = 0,$$

$$Y_{n}(y) = A_{n}\cosh\left(\frac{n\pi y}{a}\right) + B_{n}\sinh\left(\frac{n\pi - y}{a}\right), \ n \ge 1.$$

Para n = 0,  $\lambda = 0$  e

$$\frac{\mathrm{d}^2 Y_0}{\mathrm{d}y^2} = 0,$$
  
$$Y_0(y) = A_0 + B_0 y.$$

A solução geral é da forma

$$\phi(x,y) = A_0 + B_0 y + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) \left[A_n \cosh\left(\frac{n\pi y}{a}\right) + B_n \sinh\left(\frac{n\pi y}{a}\right)\right].$$

com

$$\phi(x,0) = 0, \qquad 0 \le x \le a,$$
  
$$\phi(x,b) = \phi_0, \qquad 0 \le x \le a.$$

Então,

$$\phi(x,0) = 0 = A_0 + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) [A_n] \iff A_n = 0, \forall n;$$

$$\phi(x,b) = \phi_0 = B_0 b + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) \left[B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right)\right];$$

$$\phi_0 \cos\left(\frac{m\pi x}{a}\right) = B_0 b \cos\left(\frac{m\pi x}{a}\right) + \sum_{n=1}^{\infty} B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right) \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right);$$

$$\int_0^a \phi_0 \cos\left(\frac{m\pi x}{a}\right) dx = B_0 b \int_0^a \cos\left(\frac{m\pi x}{a}\right) dx + \sum_{n=1}^{\infty} B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right) \int_0^a \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx.$$

Analisemos os valores de m separadamente. Para m > 0,

$$\int_0^a \phi_0 \cos\left(\frac{m\pi x}{a}\right) dx = B_0 b \int_0^a \cos\left(\frac{m\pi x}{a}\right) dx + B_m \sinh\left(\frac{m\pi b}{a}\right) \frac{a}{2};$$

$$\int_0^a \phi_0 \cos\left(\frac{m\pi x}{a}\right) dx = 0 \qquad \text{e} \qquad \sinh\left(\frac{m\pi b}{a}\right) \neq 0,$$

donde  $B_m = 0$ . Por outro lado, se m = 0,

$$\int_0^a \phi_0 \, dx = B_0 b \int_0^a \, dx,$$
$$\phi_0 a = B_0 b a,$$
$$B_0 = \frac{\phi_0}{b}.$$

A solução final portanto será

$$\phi(x,y) = \phi_0 \frac{y}{h} \blacksquare$$

| TEA010 Matemática Aplicada II              |
|--------------------------------------------|
| Curso de Engenharia Ambiental              |
| Departamento de Engenharia Ambiental, UFPR |
| FA, 6 dez 2023                             |

()

Prof. Nelson Luís Dias

## Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: \_\_\_\_\_

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO  $\underline{A}$ .

1 [25] Transformada de Laplace: sabendo que

$$\mathcal{L}\left\{e^{at}f(t)\right\} = \overline{f}(s-a),$$

$$(s+a)^2 = s^2 + 2as + a^2,$$

$$(s+a)^3 = s^3 + 3a^2s + 3as^2 + a^3,$$

calcule

$$\mathcal{L}^{-1}\left\{\frac{2s^2 + 4as + 2a^2 + b^2}{s^3 + 3as^2 + 3a^2s + a^3 + b^2(s+a)}\right\}.$$

É muito útil fazer uma decomposição do tipo

$$\frac{2A^2+B^2}{A(A^2+B^2)} = \frac{A^2}{A(A^2+B^2)} + \frac{A^2+B^2}{A(A^2+B^2)}.$$

SOLUÇÃO DA QUESTÃO:

$$\begin{split} \overline{f}(s) &= \frac{2(s^2 + 4as + 2a^2) + b^2}{s^3 + 3as^2 + 3a^2s + a^3 + b^2(s + a)} \\ &= \frac{2(s + a)^2 + b^2}{(s + a)^3 + b^2(s + a)} \\ &= \frac{2(s + a)^2 + b^2}{(s + a)[(s + a)^2 + b^2]} \\ &= \frac{(s + a)^2}{(s + a)[(s + a)^2 + b^2]} + \frac{(s + a)^2 + b^2}{(s + a)[(s + a)^2 + b^2]} \\ &= \frac{(s + a)}{(s + a)^2 + b^2} + \frac{1}{s + a} \\ &= \mathcal{L}\left\{e^{-at}\cos(bt)\right\} + \mathcal{L}\left\{e^{-at}\right\} \implies \\ \mathcal{L}^{-1}\left\{\frac{2s^2 + 4as + 2a^2 + b^2}{s^3 + 3as^2 + 3a^2s + a^3 + b^2(s + a)}\right\} = e^{-at}\cos(bt) + e^{-at} \blacksquare \end{split}$$

SOLUÇÃO DA QUESTÃO:

$$\int_0^\infty e^t \delta(t-b) e^{-st} dt = \int_0^\infty e^{(-s+1)t} \delta(t-b) dt$$
$$= e^{(-s+1)b} \blacksquare$$

 $\mathbf{3}$  [25] Se f(x) e g(x) são funções **reais**, quadrado-integráveis, de uma variável real x no intervalo [0, 1], **verifique** se

$$\langle f, g \rangle \equiv \int_0^1 f(x)g(x)x \, \mathrm{d}x$$

é um produto interno legítimo.

#### SOLUÇÃO DA QUESTÃO:

Neste caso, temos

$$\langle , \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{R}$$
  
 $(x, y) \mapsto \langle x, y \rangle$ 

com

$$\langle x, y \rangle = \langle y, x \rangle,$$

$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle,$$

$$\langle x, \alpha y \rangle = \alpha \langle x, y \rangle,$$

$$\langle x, x \rangle > 0, \ x \neq 0,$$

$$\langle x, x \rangle = 0, \ x = 0.$$

Agora,

$$\langle f, g \rangle = \int_0^1 f(x)g(x)x \, dx$$

$$= \int_0^1 g(x)f(x)x \, dx = \langle g, f \rangle; \checkmark$$

$$\langle f, g + h \rangle = \int_0^1 f(x)[g(x) + h(x)]x \, dx$$

$$= \int_0^1 f(x)g(x)x \, dx + \int_0^1 f(x)h(x)x \, dx = \langle f, g \rangle + \langle f, h \rangle; \checkmark$$

$$\langle f, \alpha g \rangle = \int_0^1 f(x)[\alpha g(x)]x \, dx$$

$$= \alpha \int_0^1 f(x)g(x)x \, dx = \alpha \langle f, g \rangle; \checkmark$$

Agora devemos ter o cuidado de definir o que f = 0 e  $f \neq 0$  signficam em termos do vetor f: dizemos que f = 0 se  $f(x) \neq 0$  no máximo em um conjunto **enumerável** de pontos em [0,1]; caso contrário,  $f \neq 0$ . Então,

$$f(x) \neq 0 \text{ em } [0,1] \Rightarrow$$

$$\langle f, f \rangle = \int_0^1 f(x)f(x)x \, dx = \int_0^1 f^2(x)x \, dx > 0; \checkmark$$

$$f(x) = 0 \text{ em } [0,1] \Rightarrow$$

$$\langle f, f \rangle = \int_0^1 f(x)f(x)x \, dx = \int_0^1 f^2(x)x \, dx = 0; \checkmark$$

e portanto  $\langle f, g \rangle$  é um produto interno legítimo

$$\begin{aligned} \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} &= 0, & 0 \le x \le a, \ 0 \le y \le b; \\ \frac{\partial \phi(0, y)}{\partial x} &= 0, & 0 \le y \le b, \\ \frac{\partial \phi(a, y)}{\partial x} &= 0, & 0 \le y \le b, \\ \phi(x, 0) &= 0, & 0 \le x \le a, \\ \phi(x, b) &= \phi_0 \cos\left(\frac{\pi x}{a}\right), & 0 \le x \le a. \end{aligned}$$

### SOLUÇÃO DA QUESTÃO:

Faça  $\phi(x, y) = X(x)Y(y)$ ; então,

$$\begin{split} Y \frac{\mathrm{d}^2 X}{\mathrm{d} x^2} + X \frac{\mathrm{d}^2 Y}{\mathrm{d} y^2} &= 0, \\ \frac{1}{X} \frac{\mathrm{d}^2 X}{\mathrm{d} x^2} + \frac{1}{Y} \frac{\mathrm{d}^2 Y}{\mathrm{d} y^2} &= 0, \\ \frac{1}{X} \frac{\mathrm{d}^2 X}{\mathrm{d} x^2} &= -\frac{1}{Y} \frac{\mathrm{d}^2 Y}{\mathrm{d} y^2} &= \lambda. \end{split}$$

Claramente as condições de contorno homogênas que já estão "prontas" são

$$\frac{\partial \phi(0, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$
$$\frac{\partial \phi(a, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$

e correspondem a x = 0 e x = a. Mas

$$\begin{split} \frac{\partial \phi(0,y)}{\partial x} &= \frac{\mathrm{d}X(0)}{\mathrm{d}x} Y(y), \\ \frac{\partial \phi(a,y)}{\partial x} &= \frac{\mathrm{d}X(a)}{\mathrm{d}x} Y(y); \end{split}$$

portanto, devemos resolver o problema de Sturm-Liouville

$$\frac{\mathrm{d}X}{\mathrm{d}x} - \lambda X = 0, \qquad \frac{\mathrm{d}X(0)}{\mathrm{d}x} = 0, \ \frac{\mathrm{d}X(a)}{\mathrm{d}x} = 0.$$

Se  $\lambda = +k^2 > 0$  com k > 0 (sem perda de generalidade),

$$\frac{dX}{dx} - k^2 X = 0,$$

$$r^2 - k^2 = 0,$$

$$r = \pm k,$$

$$X(x) = A \cosh(kx) + B \sinh(kx),$$

$$\frac{dX}{dx} = A \sinh(kx) + B \cosh(kx),$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow B \cosh(0) = 0 \Rightarrow B = 0;$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow A \sinh(ka) = 0 \Rightarrow A = 0,$$

e  $\lambda > 0$  não pode ser autovalor.

Se  $\lambda = 0$ ,

$$\frac{d^2X}{dx^2} = 0,$$

$$X(x) = Ax + B,$$

$$\frac{dX}{dx} = A,$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow A = 0;$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow A = 0,$$

e B pode ser qualquer. Consequentemente,  $\lambda = 0$   $\acute{e}$  um autovalor da autofunção  $X_0(x) = B$ , e sem perda de generalidade podemos usar o caso  $X_0(x) = 1$ .

Se  $\lambda = -k^2 < 0$  com k > 0 (sem perda de generalidade),

$$\frac{dX}{dx} + k^2 X = 0,$$

$$r^2 + k^2 = 0,$$

$$r = \pm ki,$$

$$X(x) = A\cos(kx) + B\sin(kx),$$

$$\frac{dX}{dx} = k[-A\sin(kx) + B\cos(kx)],$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow kB = 0 \Rightarrow B = 0,$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow -kA\sin(ka) = 0 \Rightarrow \sin(ka) = 0,$$

$$ka = n\pi,$$

$$k_n = \frac{n\pi}{a},$$

$$X_n(x) = \cos\left(\frac{n\pi x}{a}\right),$$

com A = 1 (sem perda de generalidade).

Procuremos as soluções  $Y_n(y)$  associadas. Para n > 0,

$$-\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} = \lambda_{n}Y,$$

$$-\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} = -\frac{n^{2}\pi^{2}}{a^{2}}Y,$$

$$\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} - \frac{n^{2}\pi^{2}}{a^{2}}Y = 0,$$

$$Y_{n}(y) = A_{n}\cosh\left(\frac{n\pi y}{a}\right) + B_{n}\sinh\left(\frac{n\pi - y}{a}\right), \ n \ge 1.$$

Para n = 0,  $\lambda = 0$  e

$$\frac{\mathrm{d}^2 Y_0}{\mathrm{d}y^2} = 0,$$
  
$$Y_0(y) = A_0 + B_0 y.$$

A solução geral é da forma

$$\phi(x,y) = A_0 + B_0 y + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) \left[A_n \cosh\left(\frac{n\pi y}{a}\right) + B_n \sinh\left(\frac{n\pi y}{a}\right)\right].$$

com

$$\phi(x,0) = 0, \qquad 0 \le x \le a,$$
  
$$\phi(x,b) = \phi_0 \cos\left(\frac{\pi x}{a}\right), \qquad 0 \le x \le a.$$

Então,

$$\phi(x,0) = 0 = A_0 + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) [A_n] \iff A_n = 0, \forall n;$$

$$\phi(x,b) = \phi_0 \cos\left(\frac{\pi x}{a}\right) = B_0 b + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) \left[B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right)\right];$$

$$\phi_0 \cos\left(\frac{\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) = B_0 b \cos\left(\frac{m\pi x}{a}\right) + \sum_{n=1}^{\infty} B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right) \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right);$$

$$\int_0^a \phi_0 \cos\left(\frac{\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx = B_0 b \int_0^a \cos\left(\frac{m\pi x}{a}\right) dx + \sum_{n=1}^{\infty} B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right) \int_0^a \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx.$$

Analisemos os valores de m separadamente. Para m = 0,

$$0 = \int_0^a \phi_0 \cos\left(\frac{\pi x}{a}\right) dx = B_0 b \int_0^a dx = B_0 b a; \implies B_0 = 0.$$

Para m = 1,

$$\int_0^a \phi_0 \cos\left(\frac{\pi x}{a}\right) \cos\left(\frac{\pi x}{a}\right) dx = \sum_{n=1}^\infty B_n \sinh\left(\frac{n\pi b}{a}\right) \int_0^a \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{\pi x}{a}\right) dx$$

$$= B_1 \sinh\left(\frac{\pi b}{a}\right) \int_0^a \cos\left(\frac{\pi x}{a}\right) \cos\left(\frac{\pi x}{a}\right) dx;$$

$$\phi_0 = B_1 \sinh\left(\frac{\pi b}{a}\right),$$

$$\frac{\phi_0}{\sinh\left(\frac{\pi b}{a}\right)} = B_1.$$

Para m > 1,

$$\int_0^a \phi_0 \cos\left(\frac{\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx = \sum_{n=1}^\infty B_n \sinh\left(\frac{n\pi b}{a}\right) \int_0^a \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx$$

$$0 = B_m \sinh\left(\frac{m\pi b}{a}\right) \int_0^a \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx \implies$$

$$0 = B_m.$$

A solução portanto será

$$\phi(x,y) = \frac{\phi_0}{\sinh\left(\frac{\pi b}{a}\right)}\cos\left(\frac{\pi x}{a}\right) \sinh\left(\frac{\pi y}{a}\right) \blacksquare$$

| TEA010 Matemática Aplicada II              |
|--------------------------------------------|
| Curso de Engenharia Ambiental              |
| Departamento de Engenharia Ambiental, UFPR |
| FB. 8 dez 2023                             |



Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: \_\_\_\_\_

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

 $oldsymbol{1}$  [25] Mostre que o esquema de diferenças finitas (para resolver a equação da onda cinemática)

$$u_i^{n+1} = u_i^n - \frac{c\Delta t}{2\Delta x} \left( u_{i+1}^n - u_{i-1}^n \right)$$

é incondicionalmente instável.

Prof. Nelson Luís Dias

SOLUÇÃO DA QUESTÃO:

$$\begin{split} u_i^{n+1} &= u_i^n - \frac{c\Delta t}{2\Delta x} \left( u_{i+1}^n - u_{i-1}^n \right) \\ u_i^{n+1} &= u_i^n - \frac{\text{Co}}{2} \left( u_{i+1}^n - u_{i-1}^n \right). \end{split}$$

$$\begin{split} \epsilon_i^{n+1} &= \epsilon_i^n - \frac{\operatorname{Co}}{2} \left( \epsilon_{i+1}^n - \epsilon_{i-1}^n \right), \\ \epsilon_i^n &= \sum_{l=1}^{N/2} \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l x_i} \implies \\ \xi_l \mathrm{e}^{a(t_n + \Delta t)} \mathrm{e}^{\mathrm{i} k_l i \Delta x} &= \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l i \Delta x} - \frac{\operatorname{Co}}{2} \left( \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l (i+1) \Delta x} - \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l (i-1) \Delta x} \right); \end{split}$$

eliminando o fator comum  $\xi_l e^{at_n + ik_l i\Delta x}$ ,

$$e^{a\Delta t} = 1 - \frac{\text{Co}}{2} \left( e^{+ik_l \Delta x} - e^{-ik_l \Delta x} \right)$$
  
= 1 - iCo sen  $k_l \Delta x$ .

Mas

$$|e^{a\Delta t}| = \sqrt{1 + \text{Co}^2 \text{sen}^2(k_l \Delta x)} > 1$$
 sempre,

e o esquema é incondicionalmente instável

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = -kc,$$

$$c(x, 0) = 0,$$

$$c(0, t) = c_0,$$

onde u, k e  $c_0$  são constantes positivas, calcule a sua transformada de Laplace (em t) e obtenha uma equação diferencial ordinária para  $\overline{c}(x,s)$ .

SOLUÇÃO DA QUESTÃO:

$$\mathcal{L}\left\{\frac{\partial c}{\partial t}\right\} = s\overline{c}(x,s) - c(x,0) = s\overline{c}(x,s);$$

$$\mathcal{L}\left\{u\frac{\partial c}{\partial x}\right\} = u\frac{d\overline{c}}{dx};$$

$$\mathcal{L}\left\{-kc\right\} = -k\overline{c}.$$

Portanto, a EDO é

$$s\overline{c} + u\frac{d\overline{c}}{dx} = -k\overline{c},$$
$$(s+k)\overline{c} + u\frac{d\overline{c}}{dx} = 0.$$

A condição inicial é

$$\overline{c}(0,s) = \int_{t=0}^{\infty} e^{-st} c(0,t) dt$$
$$= \int_{t=0}^{\infty} e^{-st} c_0 dt$$
$$= \frac{c_0}{s} \blacksquare$$

$$\int_0^\infty e^{-x^2} \cos(kx) \, dx = \frac{\sqrt{\pi}}{2} e^{-\frac{k^2}{4}},$$

Calcule a transformada de Fourier de  $f(x) = e^{-x^2}$ .

# SOLUÇÃO DA QUESTÃO:

$$\widehat{f}(k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-x^2} e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \underbrace{e^{-x^2} \left[\cos(kx) - i \operatorname{sen}(kx)\right]}_{\text{fimpar}} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-x^2} \cos(kx) dx$$

$$= \frac{1}{\pi} \int_{0}^{+\infty} e^{-x^2} \cos(kx) dx$$

$$= \frac{1}{\pi} \frac{\sqrt{\pi}}{2} e^{-\frac{k^2}{4}}$$

$$= \frac{1}{2\sqrt{\pi}} e^{-\frac{k^2}{4}} \blacksquare$$

### 4 [25] Considere o problema de Sturm-Liouville

$$\frac{d}{dx} \left[ e^{-x} \frac{dy}{dx} \right] + 2\lambda e^{-x} y(x) = 0, \qquad y'(0) = 0, \ y'(1) = 0.$$

Obtenha os autovalores e as autofunções associados.

#### SOLUÇÃO DA QUESTÃO:

Inicialmente, note que  $p(x) = e^{-x}$ , q(x) = 0, e  $w(x) = 2e^{-x}$ . A EDO é

$$e^{-x}\frac{d^2y}{dx^2} - e^{-x}\frac{dy}{dx} + 2\lambda e^{-x}y = 0,$$
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2\lambda y = 0.$$

A equação característica é

$$r^{2} - r + 2\lambda = 0;$$
  
$$r = \frac{1 \pm \sqrt{1 - 8\lambda}}{2}.$$

Para que as raízes sejam reais, devemos ter

$$1 - 8\lambda \ge 0,$$

$$1 \ge 8\lambda,$$

$$\lambda \le \frac{1}{8}.$$

Se  $\lambda = 1/8$ , r = 1/2 é uma raiz dupla:

$$y(x) = c_1 e^{x/2} + c_2 x e^{x/2},$$
  

$$y'(x) = \frac{c_2 x + 2c_2 + c_1}{2} e^{x/2},$$
  

$$y'(0) = \frac{1}{2}c_1 + c_2 = 0,$$
  

$$y'(1) = \frac{1}{2}c_1 e^{1/2} + \frac{3}{2}c_2 e^{1/2} = 0,$$

donde  $c_1 = c_2 = 0$ , e  $\lambda = 1/8$  não é autovalor. Se  $\lambda < 1/8$ , faça

$$\alpha = 1/2 > 0,$$

$$\beta = \frac{\sqrt{1 - 8\lambda}}{2} > 0;$$

$$y(x) = e^{\alpha x} \left[ A \cosh(\beta x) + B \sinh(\beta x) \right];$$

$$y'(x) = \alpha e^{\alpha x} \left[ A \cosh(\beta x) + B \sinh(\beta x) \right] + \beta e^{\alpha x} \left[ A \sinh(\beta x) + B \cosh(\beta x) \right]$$

$$= e^{\alpha x} \left[ (\alpha A + \beta B) \cosh(\beta x) + (\alpha B + \beta A) \sinh(\beta x) \right];$$

$$y'(0) = \alpha A + \beta B = 0,$$

$$y'(1) = e^{\alpha} \left[ (\alpha A + \beta B) \cosh(\beta) + (\alpha B + \beta A) \sinh(\beta) \right] = 0.$$

mas  $e^{\alpha} \neq 0$  e senh $(\beta) \neq 0$ , de modo que podemos simplificar para

$$\alpha A + \beta B = 0,$$
  
$$\beta A + \alpha B = 0;$$

ou

$$\begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Mas esse sistema admite solução não-nula quando o determinante é nulo, ou

$$\alpha^{2} - \beta^{2} = 0,$$
  

$$\alpha^{2} = \beta^{2},$$
  

$$\alpha = \pm \beta.$$

Por hipótese,  $\alpha = 1/2 > 0$ , e  $\beta > 0$ , donde  $\alpha = \beta = 1/2$ , e  $\lambda = 0$  é autovalor. Neste caso, temos B = -A, e

$$y_0(x) = e^{x/2} [\cosh(x/2) - \sinh(x/2)] \equiv 1$$

é uma autofunção! Note que  $\lambda = 0$  é o *único* autovalor para a região  $\lambda < 1/8$ . Prosseguindo, se  $\lambda > 1/8$ ,

$$\alpha = 1/2 > 0,$$

$$\beta = \frac{\sqrt{8\lambda - 1}}{2},$$

$$y(x) = e^{\alpha x} \left[ A\cos(\beta x) + B\sin(\beta x) \right],$$

$$y'(x) = \alpha e^{\alpha x} \left[ A\cos(\beta x) + B\sin(\beta x) \right] + \beta e^{\alpha x} \left[ -A\sin(\beta x) + B\cos(\beta x) \right]$$

$$= e^{\alpha x} \left[ (\alpha A + \beta B)\cos(\beta x) + (\alpha B - \beta A)\sin(\beta x) \right];$$

$$y'(0) = 0 \implies (\alpha A + \beta B) = 0,$$

$$y'(1) = 0 \implies e^{\alpha} \left[ (\alpha B - \beta A)\sin(\beta) \right] = 0$$

Mas  $e^{\alpha} \neq 0$ , donde

$$\begin{bmatrix} \alpha & \beta \\ -\beta \operatorname{sen}(\beta) & \alpha \operatorname{sen}(\beta) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

e o sistema admitirá soluções não-trivais se o determinante for nulo:

$$(\alpha^2 + \beta^2) \operatorname{sen}(\beta) = 0,$$

$$\operatorname{sen}(\beta) = 0,$$

$$\beta_n = \frac{\sqrt{8\lambda_n - 1}}{2} = n\pi,$$

$$\frac{8\lambda_n - 1}{4} = n^2 \pi^2,$$

$$\lambda_n = \frac{1}{8} + \frac{n^2 \pi^2}{2}, \qquad n \ge 1.$$

B depende de A segundo

$$B = -\frac{\alpha}{\beta}A,$$

de forma que as autofunções são

$$y_n(x) = e^{x/2} \left[ \cos(n\pi x) - \frac{1}{2n\pi} \operatorname{sen}(n\pi x) \right], \qquad n \ge 1 \blacksquare$$