TEA013 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P01A, 29 out 2022

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Sabendo que

Prof. Nelson Luís Dias

$$\mathcal{L}\left\{e^{at}\right\} = \frac{1}{s-a},$$

$$\mathcal{L}\left\{t\right\} = \frac{1}{s^2},$$

$$\mathcal{L}\left\{f'(t)\right\} = s\overline{f}(s) - f(0),$$

e utilizando obrigatoriamente a transformada de Laplace, resolva a equação diferencial

$$\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{x}{T} = \frac{x_0 t}{T^2}, \qquad x(0) = x_0.$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{x}{T} = \frac{x_0 t}{T^2}$$

$$\overline{x} - x_0 + \frac{\overline{x}}{T} = \frac{x_0}{(sT)^2}$$

$$\overline{x} \left(\frac{sT+1}{T}\right) = x_0 \left[\frac{(sT)^2 + 1}{(sT)^2}\right]$$

$$\overline{x} = x_0 \frac{1 + (sT)^2}{Ts^2(sT+1)} = x_0 \left[\frac{2T}{sT+1} + \frac{1}{Ts^2} - \frac{1}{s}\right]$$

$$= x_0 \left[\frac{2}{s + \frac{1}{T}} + \frac{1}{Ts^2} - \frac{1}{s}\right] \Rightarrow$$

$$x(t) = x_0 \left[2e^{-\frac{t}{T}} + \frac{t}{T} - 1\right] \blacksquare$$

2 [25] Utilizando **obrigatoriamente** o Teorema da Convolução, calcule

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+a)}\frac{a}{(s^2+a^2)}\right\}.$$

$$\mathcal{L}\left\{f(t)*g(t)\right\} = \overline{f}(s)\overline{g}(s),$$

$$\overline{f}(s) = \frac{1}{s+a} \Rightarrow f(t) = e^{-at},$$

$$\overline{g}(s) = \frac{a}{(s^2+a^2)} \Rightarrow g(t) = \operatorname{sen}(at),$$

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+a)}\frac{a}{(s^2+a^2)}\right\} = f(t)*g(t)$$

$$= \int_{\tau=0}^{t} e^{-a(t-\tau)} \operatorname{sen}(a\tau) d\tau$$

$$= e^{-at} \int_{\tau=0}^{t} e^{a\tau} \operatorname{sen}(a\tau) d\tau$$

$$= \frac{1}{2a} \left[\operatorname{sen}(at) - \cos(at) + e^{-at}\right] \blacksquare$$

 ${f 3}$ [25] O loop principal de um método explícito de solução da equação da onda cinemática

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

Preencha as aproximações de derivadas utilizadas:

$$\frac{\partial u}{\partial t} \approx \dots,$$
$$\frac{\partial u}{\partial x} \approx \dots,$$

onde o lado direito deve conter (no máximo) $u_i^n, u_{i-1}^n, u_{i+1}^n, u_i^{n+1}, \Delta t$, e Δx .

$$\begin{split} \frac{\partial u}{\partial t} &\approx \frac{u_i^{n+1} - u_i^n}{\Delta t}, \\ \frac{\partial u}{\partial x} &\approx \frac{u_i^{n} - u_{i-1}^n}{\Delta x}. \end{split}$$

4 [25] Considere a seguinte discretização de

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

(onde c > 0 é constante) ($t_n = n\Delta t$; $x_i = i\Delta x$):

$$\frac{u_i^{n+1} - u_i^n}{\Lambda t} = -c \frac{u_{i+1} - u_i}{\Lambda x}.$$

Faça uma análise completa de estabilidade de von Neumann do esquema em função do número de Courant Co = $(c\Delta t)/\Delta x$. Descubra se o esquema é incondicionalmente instável, condicionalmente estável, ou incondicionalmente estável. Se o esquema for condicionalmente estável, para que valores de Co ele é estável?

SOLUÇÃO DA QUESTÃO:

A equação é linear. O esquema é explícito, e temos

$$u_i^{n+1} - u_i^n = -\text{Co}\left[u_{i+1}^n - u_i^n\right],$$

$$u_i^{n+1} = u_i^n - \text{Co}\left[u_{i+1}^n - u_i^n\right],$$

$$u_i^{n+1} = [1 + \text{Co}]u_i^n - \text{Co}u_{i+1}^n.$$

Substituindo um modo do erro de arredondamento

$$\epsilon_i^n = \sum_l \xi_l e^{at} e^{ik_l x_i}$$

no esquema de diferenças,

$$\begin{aligned} \xi_l \mathrm{e}^{a(t_n + \Delta t)} \mathrm{e}^{\mathrm{i} k_l i \Delta x} &= [1 + \mathrm{Co}] \, \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l i \Delta x} - \mathrm{Co} \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l (i+1) \Delta x}, \\ \mathrm{e}^{a\Delta t} &= [1 + \mathrm{Co}] - \mathrm{Co} \mathrm{e}^{\mathrm{i} k_l \Delta x}. \end{aligned}$$

Faça

$$\theta = k_1 \Delta x$$
.

Então,

$$\begin{split} \mathrm{e}^{a\Delta t} &= [1+\mathrm{Co}] - \mathrm{Co}[\cos(\theta) + \mathrm{i} \, \mathrm{sen}(\theta)] \\ &= [1+\mathrm{Co}(1-\cos(\theta))] - \mathrm{i} \mathrm{Co} \, \mathrm{sen}(\theta); \\ \left| \mathrm{e}^{a\Delta t} \right|^2 &= \left[1 + 2\mathrm{Co}(1-\cos(\theta)) + \mathrm{Co}^2(1-\cos(\theta))^2 \right] + \mathrm{Co}^2 \, \mathrm{sen}^2(\theta) \\ &= 1 + 2\mathrm{Co}(1-\cos(\theta)) + \mathrm{Co}^2(1-2\cos(\theta) + \cos^2(\theta)) + \mathrm{Co}^2 \, \mathrm{sen}^2(\theta) \\ &= 1 + 2\mathrm{Co}(1-\cos(\theta)) - 2\cos(\theta)\mathrm{Co}^2 + 2\mathrm{Co}^2 \\ &= 1 + 2\mathrm{Co} + 2\mathrm{Co}^2 - \cos(\theta) \left[2\mathrm{Co} + 2\mathrm{Co}^2 \right] \\ &= 1 + 2 \left[\mathrm{Co} + \mathrm{Co}^2 \right] \left[1 - \cos(\theta) \right]. \end{split}$$

Desejamos

$$\left| e^{a\Delta t} \right|^2 = 1 + 2 \left[\text{Co} + \text{Co}^2 \right] \left[1 - \cos(\theta) \right] \le 1;$$

 $2 \left[\text{Co} + \text{Co}^2 \right] \left[1 - \cos(\theta) \right] \le 0.$

 $Isso \, \acute{e} \, imposs\'{i} vel: \, \left[1-cos(\theta)\right] \geq 0 \, sempre, \, assim \, como \left[Co+Co^2\right]. \, \, O \, esquema \, \acute{e}, \, portanto, \, incondicionalmente \, inst\'{a} vel \, cos(\theta) \, della \, cos(\theta) \, dell$

TEA013 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P01B, 04 nov 2022

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Sabendo que

Prof. Nelson Luís Dias

$$\mathscr{L}\left\{\mathrm{e}^{at}\right\} = \frac{1}{s-a},$$

Calcule a transformada de Laplace do cosh(t).

$$\mathcal{L}\left\{\cosh(t)\right\} = \mathcal{L}\left\{\frac{e^t + e^{-t}}{2}\right\}$$

$$= \frac{1}{2}\left[\mathcal{L}\left\{e^t\right\} + \mathcal{L}\left\{e^{-t}\right\}\right]$$

$$= \frac{1}{2}\left[\frac{1}{s-1} + \frac{1}{s+1}\right]$$

$$= \frac{1}{2}\frac{s+1+s-1}{s^2-1^2}$$

$$= \frac{s}{s^2-1^2} \blacksquare$$

$$x'' - 7x' + 12x = \text{sen}(t),$$
 $x(0) = 0, x'(0) = 1.$

$$x'' - 7x' + 12x = \operatorname{sen}(t),$$

$$s^{2}\overline{x} - sx(0) - x'(0) - 7[s\overline{x} - x(0)] + 12\overline{x} = \frac{1}{s^{2} + 1},$$

$$(s^{2} - 7s + 12)\overline{x} - 1 = \frac{1}{s^{2} + 1},$$

$$(s^{2} - 7s + 12)\overline{x} = 1 + \frac{1}{s^{2} + 1} = \frac{s^{2} + 2}{s^{2} + 1},$$

$$\overline{x} = \frac{s^{2} + 2}{(s^{2} - 7s + 12)(s^{2} + 1)},$$

$$\overline{x} = \frac{A}{s - 3} + \frac{B}{s - 4} + \frac{Cs + D}{s^{2} + 1}$$

$$= \frac{7s + 11}{170(s^{2} + 1)} - \frac{11}{10} \frac{1}{s - 3} + \frac{18}{17} \frac{1}{s - 4};$$

$$x(t) = \frac{7}{170} \cos(t) + \frac{11}{170} \operatorname{sen}(t) - \frac{11}{10} e^{3t} + \frac{18}{17} e^{4t} \blacksquare$$

3 [25] Podemos discretizar a equação da onda cinemática como

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = -c \frac{3u_i^n - 4u_{i-1}^n + u_{i-2}^n}{2\Delta x}.$$

Calcule o fator de amplificação complexo $e^{a\Delta t}$ desse esquema em função do número de Courant Co, de um número de onda k_l arbitrário (um modo de Fourier qualquer), e de Δx .

SOLUÇÃO DA QUESTÃO:

Escrevemos o esquema em termos do número de Courant como:

$$u_i^{n+1} = u_i^n - \frac{c\Delta t}{2\Delta x} [3u_i^n - 4u_{i-1}^n + u_{i-2}^n];$$

$$u_i^{n+1} = u_i^n - \frac{\text{Co}}{2} [3u_i^n - 4u_{i-1}^n + u_{i-2}^n].$$

Cada modo de Fourier do erro de arredondamento obedece à mesma equação:

$$\begin{split} \xi_l \mathrm{e}^{a(t_n + \Delta t)} \mathrm{e}^{\mathrm{i}k_l i \Delta x} &= \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i}k_l i \Delta x} \\ &- \frac{\mathrm{Co}}{2} \big[3 \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i}k_l i \Delta x} - 4 \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i}k_l (i-1) \Delta x} + \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i}k_l (i-2) \Delta x} \big]; \\ \mathrm{e}^{a\Delta t} &= 1 - \frac{\mathrm{Co}}{2} \big[3 - 4 \mathrm{e}^{-\mathrm{i}k_l \Delta x} + \mathrm{e}^{-2\mathrm{i}k_l \Delta x} \big] \, \blacksquare \end{split}$$

$$\int_{-\infty}^{x} H(\xi - a) \cos(\xi) \, \mathrm{d}\xi.$$

$$\int_{-\infty}^{x} \underbrace{H(\xi - a) \cos(\xi) \, \mathrm{d}\xi}_{u} = uv \Big|_{-\infty}^{x} - \int_{-\infty}^{x} v \, \mathrm{d}u;$$

$$\mathrm{d}u = \delta(\xi - a);$$

$$v = \mathrm{sen}(x);$$

$$\int_{-\infty}^{x} H(\xi - a) \cos(\xi) \, \mathrm{d}\xi = H(\xi - a) \, \mathrm{sen}(\xi) \Big|_{-\infty}^{x} - \int_{-\infty}^{x} \mathrm{sen}(\xi) \delta(\xi - a) \, \mathrm{d}x$$

$$= H(x - a) \, \mathrm{sen}(x) - H(x - a) \, \mathrm{sen}(a)$$

$$= H(x - a) \, [\mathrm{sen}(x) - \mathrm{sen}(a)] \quad \blacksquare$$

TEA013 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P02A, 03 dez 2022

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Utilizando **obrigatoriamente** o Teorema da Convolução, calcule

$$\mathcal{L}^{-1}\left\{\frac{1}{s^2 - 3s + 2}\right\}$$

SOLUÇÃO DA QUESTÃO:

Prof. Nelson Luís Dias

$$s^{2} - 3s + 2 = (s - 1)(s - 2);$$

$$\mathcal{L}^{-1} \left\{ \frac{1}{s^{2} - 3s + 2} \right\} = \mathcal{L}^{-1} \left\{ \frac{1}{(s - 1)(s - 2)} \right\}.$$

Mas

$$\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} = e^t,$$

$$\mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} = e^{2t},$$

$$\mathcal{L}^{-1}\left\{\frac{1}{(s-1)(s-2)}\right\} = \int_0^t e^{t-\tau}e^{2\tau} d\tau$$

$$= e^t \int_0^t e^{\tau} d\tau$$

$$= e^{2t} - e^t \blacksquare$$

$$\langle , \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{C}$$

$$(x, y) \mapsto \langle x, y \rangle$$

é um produto interno, enumere as 5 propriedades que o definem adotadas neste curso.

SOLUÇÃO DA QUESTÃO:

As propriedades definidoras do produto interno são:

$$\langle x, y \rangle = \langle y, x \rangle^*,$$

$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle,$$

$$\langle x, \alpha y \rangle = \alpha \langle x, y \rangle,$$

$$\langle x, x \rangle > 0, \ x \neq 0,$$

$$\langle x, x \rangle = 0, \ x = 0.$$

3 [25] Calcule a série de Fourier **complexa** de

$$f(x) = \begin{cases} -1, & -1 \le x < 0, \\ +1, & 0 \le x \le 1. \end{cases}$$

SOLUÇÃO DA QUESTÃO:

$$f(x) = \sum_{n = -\infty}^{+\infty} c_n e^{\frac{2\pi i n x}{L}};$$

$$c_0 = \frac{1}{L} \int_a^b f(x) e^0 dx$$

$$= \frac{1}{2} \int_{-1}^{+1} f(x) dx$$

$$= 0;$$

Se $n \neq 0$,

$$c_{n} = \frac{1}{L} \int_{a}^{b} f(x) e^{-\frac{2\pi i n x}{L}} dx,$$

$$a = -1,$$

$$b = +1,$$

$$L = 2,$$

$$c_{n} = \frac{1}{2} \left[\int_{-1}^{0} (-1) e^{-\frac{2\pi i n x}{L}} dx + \int_{0}^{+1} (+1) e^{-\frac{2\pi i n x}{L}} dx \right]$$

$$\vdots$$

$$= \frac{i}{\pi n} \left[(-1)^{n} - 1 \right];$$

$$f(x) = \sum_{\substack{n = -\infty \\ n \neq 0}}^{n = +\infty} \frac{i}{\pi n} \left[(-1)^{n} - 1 \right] e^{\pi i n x} \blacksquare$$

4 [25] Sabendo que, se $m, n \in \mathbb{Z}$,

$$\int_{-1}^{+1} \operatorname{sen}(m\pi x) \operatorname{sen}(n\pi x) dx = \begin{cases} 0 & m \neq n, \\ 1 & m = n, \end{cases}$$

calcule a série de Fourier trigonométrica de

$$f(x) = \operatorname{sen}(\pi x), \qquad -1 \le x \le +1.$$

SOLUÇÃO DA QUESTÃO:

$$f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos\left(\frac{2n\pi x}{L}\right) + B_n \sin\left(\frac{2n\pi x}{L}\right).$$

Mas f(x) é ímpar; logo, $A_n = 0$.

$$a = -1,$$

$$b = +1,$$

$$L = 2,$$

$$B_n = \frac{2}{2} \int_{-1}^{+1} \operatorname{sen}(\pi x) \operatorname{sen}(n\pi x) dx$$

$$= \begin{cases} 0 & n \neq 1, \\ 1 & n = 1. \end{cases}$$

Portanto, a série de Fourier de f(x) é a própria função:

$$f(x) = \operatorname{sen}(\pi x) \blacksquare$$

TEA013 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P02B, 10 dez 2022

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Sabendo que

Prof. Nelson Luís Dias

$$\int_0^\infty \frac{x \sec(kx)}{1 + \left(\frac{x}{a}\right)^2} \, dx = \operatorname{snl}(k) \frac{\pi a^2 e^{-a|k|}}{2}, \qquad a > 0, \qquad \operatorname{snl}(k) = \begin{cases} +1, & k > 0 \\ 0, & k = 0 \\ -1, & k < 0 \end{cases}$$

calcule a transformada de Fourier de

$$f(x) = \frac{x}{1 + \left(\frac{x}{a}\right)^2}, \qquad a > 0.$$

$$\widehat{f}(k) = \frac{1}{2\pi} \int_{x=-\infty}^{+\infty} \frac{x}{1 + \left(\frac{x}{a}\right)^2} e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{x=-\infty}^{+\infty} \frac{x}{1 + \left(\frac{x}{a}\right)^2} \left[\cos(kx) - i\sin(kx)\right] dx$$

$$= \frac{1}{2\pi} \int_{x=-\infty}^{+\infty} \frac{x\cos(kx)}{1 + \left(\frac{x}{a}\right)^2} dx - \frac{i}{2\pi} \int_{x=-\infty}^{+\infty} \frac{x\sin(kx)}{1 + \left(\frac{x}{a}\right)^2} dx$$

$$= -\frac{i}{\pi} \int_{x=0}^{+\infty} \frac{x\sin(kx)}{1 + \left(\frac{x}{a}\right)^2} dx$$

$$= -\frac{i}{\pi} \sin(k) \frac{\pi a^2 e^{-a|k|}}{2}$$

$$= -i \sin(k) \frac{a^2 e^{-a|k|}}{2} \blacksquare$$

2 [25] Sem utilizar frações parciais, encontre a transformada de Laplace inversa

$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\}.$$

SOLUÇÃO DA QUESTÃO:

Uso o teorema da convolução,

$$\mathcal{L}[f*g] = \overline{f}(s)\overline{g}(s) \Rightarrow \mathcal{L}^{-1}\left\{\overline{f}(s)\overline{g}(s)\right\} = \int_{\tau=0}^t f(\tau)g(t-\tau)\,\mathrm{d}\tau.$$

Mas

$$\overline{f}(s) = \frac{1}{s} \Rightarrow f(t) = 1, \ \overline{g}(s) = \frac{1}{s^2 + 4} \Rightarrow g(t) = \frac{\operatorname{sen}(2t)}{2},$$

donde

$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\} = \int_{\tau=0}^{t} \frac{\sin(2(t-\tau))}{2} \,\mathrm{d}\tau = \frac{1-\cos(2t)}{4} \,\blacksquare$$

 $\mathbf{3}$ [25] O produto interno canônico de duas funções *reais* F(x) e G(x) no intervalo [a,b] é

$$\langle F, G \rangle \equiv \int_a^b F(x)G(x) \, \mathrm{d}x.$$

Sejam f(x) uma função real qualquer em [a, b], e

$$F(x) = xf(x),$$

$$G(x) = \frac{\mathrm{d}f}{\mathrm{d}x}.$$

Usando a desigualdade de Schwarz, obtenha o lado direito (ou seja: preencha os 3 pontos) de

$$\left| \int_{a}^{b} x f(x) \frac{\mathrm{d}f}{\mathrm{d}x} \, \mathrm{d}x \right| \leq \dots$$

$$\left| \langle F, G \rangle \right| \le \sqrt{\langle F, F \rangle} \sqrt{\langle G, G \rangle};$$

$$\left| \int_{a}^{b} x f(x) \frac{\mathrm{d}f}{\mathrm{d}x} \, \mathrm{d}x \right| \le \left[\int_{a}^{b} |x f(x)|^{2} \, \mathrm{d}x \right]^{1/2} \left[\int_{a}^{b} \left| \frac{\mathrm{d}f}{\mathrm{d}x} \right|^{2} \, \mathrm{d}x \right]^{1/2} \blacksquare$$

4 [25] Sabendo que

$$\mathscr{F}\left\{e^{-m|x|}\right\} = \frac{1}{\pi} \frac{m}{(m^2 + k^2)},$$

e utilizando o teorema de Parseval na forma

$$\int_{x=-\infty}^{+\infty} |f(x)|^2 dx = 2\pi \int_{k=-\infty}^{+\infty} |\widehat{f}(k)|^2 dk,$$

obtenha

$$\int_{k=0}^{\infty} \frac{m^2}{(m^2 + k^2)^2} \, \mathrm{d}k.$$

$$\int_{x=-\infty}^{+\infty} \left(e^{-m|x|} \right)^2 dx = 2\pi \int_{k=-\infty}^{+\infty} \left(\frac{1}{\pi} \right)^2 \frac{m^2}{(m^2 + k^2)^2} dk$$

$$\int_{x=-\infty}^{+\infty} e^{-2m|x|} dx = \frac{2}{\pi} \int_{k=-\infty}^{+\infty} \frac{m^2}{(m^2 + k^2)^2} dk$$

$$2 \int_{x=0}^{+\infty} e^{-2mx} dx = \frac{4}{\pi} \int_{k=0}^{+\infty} \frac{m^2}{(m^2 + k^2)^2} dk$$

$$2 \times \frac{1}{2m} = \frac{4}{\pi} \int_{k=0}^{+\infty} \frac{m^2}{(m^2 + k^2)^2} dk$$

$$\frac{\pi}{4m} = \int_{k=0}^{+\infty} \frac{m^2}{(m^2 + k^2)^2} dk \blacksquare$$

TEA013 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P03A, 21 jan dez 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura:

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Obtenha a função de Green de

Prof. Nelson Luís Dias

$$\frac{\mathrm{d}y}{\mathrm{d}x} - (\mathrm{tgh}(x))y = f(x), \qquad y(0) = y_0.$$

Atenção! tgh(x) = senh(x)/cosh(x) é a tangente **hiperbólica**. Lembre-se de que

$$\frac{d \operatorname{senh}(x)}{dx} = \cosh(x);$$
$$\frac{d \cosh(x)}{dx} = \operatorname{senh}(x).$$

SOLUÇÃO DA QUESTÃO:

$$G(x,\xi)\frac{\mathrm{d}y}{\mathrm{d}\xi} - G(x,\xi)(\mathrm{tgh}(\xi))y = G(x,\xi)f(\xi)$$

$$\int_0^\infty G(x,\xi)\frac{\mathrm{d}y}{\mathrm{d}\xi}\,\mathrm{d}\xi - \int_0^\infty G(x,\xi)(\mathrm{tgh}(\xi))y\,\mathrm{d}\xi = \int_0^\infty G(x,\xi)f(\xi)\,\mathrm{d}\xi$$

$$G(x,\xi)y(\xi)\Big|_{\xi=0}^{\xi=\infty} - \int_0^\infty \frac{\mathrm{d}G}{\mathrm{d}\xi}y\,\mathrm{d}\xi - \int_0^\infty G(x,\xi)(\mathrm{tgh}(\xi))y\,\mathrm{d}\xi = \int_0^\infty G(x,\xi)f(\xi)\,\mathrm{d}\xi$$

$$G(x,\infty)y(\infty) - G(x,0)y(0) - \int_0^\infty \left[\frac{\mathrm{d}G}{\mathrm{d}\xi} + (\mathrm{tgh}(\xi))G\right]y(\xi)\,\mathrm{d}\xi = \int_0^\infty G(x,\xi)f(\xi)\,\mathrm{d}\xi$$

Nesse ponto, nós desejamos:

$$G(x, \infty) = 0,$$

$$\frac{\mathrm{d}G}{\mathrm{d}\xi} + (\mathrm{tgh}(\xi))G = \delta(\xi - x).$$

Não é uma boa idéia usar transformada de Laplace, por causa da $tgh(\xi)$; façamos $G(x,\xi) = u(x,\xi)v(x,\xi)$, e prossigamos.

$$\begin{split} u\frac{\mathrm{d}v}{\mathrm{d}\xi} + v\frac{\mathrm{d}u}{\mathrm{d}\xi} + (\mathrm{tgh}(\xi))uv &= \delta(\xi - x), \\ u\left[\frac{\mathrm{d}v}{\mathrm{d}\xi} + (\mathrm{tgh}(\xi))v\right] + v\frac{\mathrm{d}u}{\mathrm{d}\xi} &= \delta(\xi - x) \\ \frac{\mathrm{d}v}{\mathrm{d}\xi} &= -v\,\mathrm{tgh}(\xi) \\ \frac{\mathrm{d}v}{\mathrm{d}\xi} &= -\mathrm{tgh}(\xi)\mathrm{d}\xi \\ \int_{v(x,0)}^{v(x,\xi)} \frac{\mathrm{d}v}{v} &= -\int_{0}^{\xi} \mathrm{tgh}(\xi')\,\mathrm{d}\xi' \\ \ln\frac{v(x,\xi)}{v(x,0)} &= -\ln(\cosh(\xi)) \\ v(x,\xi) &= \frac{v(x,0)}{\cosh(\xi)}; \end{split}$$

Seguimos para *u*:

$$\frac{v(x,0)}{\cosh(\xi)} \frac{\mathrm{d}u}{\mathrm{d}\xi} = \delta(\xi - x),$$

$$v(x,0) \int_{u(x,0)}^{u(x,\xi)} \mathrm{d}u = \int_{0}^{\xi} \cosh(\eta) \delta(\eta - x) \, \mathrm{d}\eta$$

$$v(x,0) [u(x,\xi) - u(x,0)] = \cosh(x) H(\xi - x)$$

$$u(x,\xi) = u(x,0) + \frac{\cosh(x)}{v(x,0)} H(\xi - x)$$

$$G(x,\xi) = u(x,\xi) v(x,\xi) = u(x,0) \frac{v(x,0)}{\cosh(\xi)} + \frac{\cosh(x)}{\cosh(\xi)} H(\xi - x)$$

$$= \frac{G(x,0)}{\cosh(\xi)} + \frac{\cosh(x)}{\cosh(\xi)} H(\xi - x)$$

Isso já nos permite avaliar o comportamento de $G(x, \infty)$:

$$G(x, \infty) = \frac{1}{\cosh(\infty)} [G(x, 0) + \cosh(x)],$$

$$G(x, 0) = -\cosh(x).$$

 $= \frac{1}{\cosh(\xi)} \left[G(x,0) + \cosh(x) H(\xi - x) \right].$

Finalmente,

$$G(x,\xi) = \frac{1}{\cosh(\xi)} \left[-\cosh(x) + \cosh(x)H(\xi - x) \right]$$
$$= \frac{\cosh(x)}{\cosh(\xi)} \left[-1 + H(\xi - x) \right]$$
$$= -\left[1 - H(\xi - x) \right] \frac{\cosh(x)}{\cosh(\xi)} \blacksquare$$

$$x > \operatorname{tgh}(x), \quad \forall x > 0,$$

ou seja: que não é possível encontrar nenhum x > 0 tal que

$$x = tgh(x)$$
.

Sugestão: mostre que

$$E(x) = x - tgh(x)$$

$$= \frac{x(e^x + e^{-x}) - (e^x - e^{-x})}{e^x + e^{-x}}.$$

Agora, utilizando as séries de Taylor

$$x(e^{x} + e^{-x}) = \sum_{n=0}^{\infty} \frac{2(2n+1)}{(2n+1)!} x^{2n+1},$$

$$(e^{x} - e^{-x}) = \sum_{n=0}^{\infty} \frac{2}{(2n+1)!} x^{2n+1}.$$

encontre a expressão para a_{2n+1} em

$$E(x) = \frac{\sum_{n=1}^{\infty} a_{2n+1} x^{2n+1}}{(e^x + e^{-x})}.$$

(atenção para o início do somatório em n = 1: por quê?) Qual é o sinal de a_{2n+1} na expressão acima? Qual é o sinal de E(x)? Por que isso prova que x > tgh(x) para x > 0?

SOLUÇÃO DA QUESTÃO:

$$tgh(x) = \frac{senh(x)}{cosh(x)};$$

$$senh(x) = \frac{e^{x} - e^{-x}}{2};$$

$$cosh(x) = \frac{e^{x} + e^{-x}}{2};$$

$$E(x) = x - tgh(x)$$

$$= x - \frac{\frac{e^{x} - e^{-x}}{2}}{\frac{e^{x} + e^{-x}}{2}}$$

$$= x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$= \frac{x(e^{x} + e^{-x}) - (e^{x} - e^{-x})}{e^{x} + e^{-x}}$$

$$= \frac{\sum_{n=0}^{\infty} \frac{2(2n+1)}{(2n+1)!} x^{2n+1} - \sum_{n=0}^{\infty} \frac{2}{(2n+1)!} x^{2n+1}}{e^{x} + e^{-x}}$$

$$= \frac{\sum_{n=0}^{\infty} \frac{2(2n+1) - 2}{(2n+1)!} x^{2n+1}}{e^{x} + e^{-x}};$$

$$= \frac{\sum_{n=0}^{\infty} \frac{4n}{(2n+1)!} x^{2n+1}}{e^{x} + e^{-x}};$$

Portanto,

$$a_{2n+1} = \frac{4n}{(2n+1)!}.$$

Mas $a_1 = 0$, donde

$$E(x) = \frac{\sum_{n=1}^{\infty} \frac{4n}{(2n+1)!} x^{2n+1}}{e^x + e^{-x}}.$$

Para $n \ge 1$, $a_{2n+1} > 0$, assim como x^{2n+1} (pois x > 0), de maneira que o numerador da expressão acima é positivo; o denominador também é, e consequentemente E(x) > 0. Logo,

$$x - \operatorname{tgh}(x) > 0;$$

 $x > \operatorname{tgh}(x), \quad \forall x > 0 \blacksquare$

$$y'' + \lambda y = 0$$
, $y(0) + y'(0) = 0$, $y(1) = 0$,

Discuta os sinais de λ , e obtenha as equações transcedentais (ou os valores) para **todos** os autovalores (uma equação transcedental é uma equação que não pode ser resolvida algebricamente). Você pode usar o resultado da questão **2**.

SOLUÇÃO DA QUESTÃO:

Discutimos os sinais:

 $\lambda < 0$:

$$y(x) = A \cosh(\sqrt{-\lambda}x) + B \operatorname{senh}(\sqrt{-\lambda}x),$$

$$y'(x) = \sqrt{-\lambda} \left[B \cosh(\sqrt{-\lambda}x) + A \operatorname{senh}(\sqrt{-\lambda}x) \right].$$

O par de equações que precisamos resolver para atender as condições de contorno é

$$A + \sqrt{-\lambda}B = 0,$$
$$\cosh(\sqrt{-\lambda})A + \sinh(\sqrt{-\lambda})B = 0.$$

$$\begin{bmatrix} 1 & +\sqrt{-\lambda} \\ \cosh(\sqrt{-\lambda}) & \operatorname{senh}(\sqrt{-\lambda}) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Para termos $(A, B) \neq (0, 0)$, é necessário que

$$senh(\sqrt{-\lambda}) - \sqrt{-\lambda} \cosh(\sqrt{-\lambda}) = 0$$

Para economizar lápis: $\xi = \sqrt{-\lambda} > 0$, e

$$senh(\xi) - \xi cosh(\xi) = 0,$$

$$tgh(\xi) = \xi,$$

que não possui solução para $\xi > 0$, conforme vimos na questão **2**; logo $\lambda < 0$ não pode ser autovalor. $\lambda = 0$:

$$y = Ax + B,$$

$$y' = A$$

O par de equações que precisamos resolver para atender as condições de contorno é

$$A + B = 0,$$

$$A + B = 0,$$

donde

$$A = -B$$

de forma que $\lambda = 0$ é um autovalor, e uma autofunção associada é

$$y_0(x) = x - 1.$$

 $\lambda > 0$:

$$y(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x),$$

$$y'(x) = \sqrt{\lambda} \left[-A\sin(\sqrt{\lambda}x) + B\cos(\sqrt{\lambda}x) \right]$$

O par de equações que precisamos resolver para atender as condições de contorno é

$$A + \sqrt{\lambda}B = 0,$$

$$\cos(\sqrt{\lambda})A + \sin(\sqrt{\lambda})B = 0.$$

$$\begin{bmatrix} 1 & +\sqrt{\lambda} \\ \cos(\sqrt{\lambda}) & \sin(\sqrt{\lambda}) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

ou, impondo que o determinante seja nulo para permitir $A \neq 0$ e/ou $B \neq 0$:

$$\operatorname{sen}(\sqrt{\lambda_n}) - \sqrt{\lambda_n} \cos(\sqrt{\lambda_n}) = 0$$

$$\operatorname{tg}(\sqrt{\lambda_n}) = \sqrt{\lambda_n} \blacksquare$$

4 [25] Encontre $\phi(x, t)$ pelo método das características:

$$\frac{\partial \phi}{\partial t} + \operatorname{senh}(t) \frac{\partial \phi}{\partial x} = 0, \qquad \phi(x, 0) = f(x).$$

SOLUÇÃO DA QUESTÃO:

Faça $\phi(x, t) = F(s)$ sobre x = X(s) e t = T(s):

$$\begin{split} \phi(X(s),T(s)) &= F(s); \\ \frac{\mathrm{d}F}{\mathrm{d}s} &= \frac{\partial \phi}{\partial t} \frac{\mathrm{d}T}{\mathrm{d}s} + \frac{\partial \phi}{\partial x} \frac{\mathrm{d}X}{\mathrm{d}s}; \\ \frac{\mathrm{d}T}{\mathrm{d}s} &= 1 \Rightarrow T(s) = \underbrace{T(0)}_{\equiv 0} + s, \\ \frac{\mathrm{d}X}{\mathrm{d}s} &= \mathrm{senh}(t) = \mathrm{senh}(s), \\ \int_{X(0)}^{X(s)} \mathrm{d}\xi &= \int_{0}^{s} \mathrm{senh}(\tau) \, \mathrm{d}\tau, \\ X(s) - X(0) &= \mathrm{cosh}(s) - 1 \Rightarrow X(s) = X(0) + \mathrm{cosh}(s) - 1. \end{split}$$

Mas

$$\begin{split} \frac{\partial \phi}{\partial t} + \mathrm{senh}(t) \frac{\partial \phi}{\partial x} &= 0, \\ \frac{\mathrm{d}F}{\mathrm{d}s} &= 0, \\ F(s) &= F(0) \\ \phi(x,t) &= F(0) = f(X(0)) = f(x - \cosh(t) + 1) \blacksquare \end{split}$$

TEA013 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P03B 27 ian dez 2023

 \mathbf{O}

P03B, 27 jan dez 2023 Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura:

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Obtenha a função de Green de

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{x}{x+1}y = f(x), \qquad y(0) = y_0.$$

Você pode usar

$$\int_{\eta=0}^{\xi} \frac{\eta}{\eta+1} \, \mathrm{d} \eta = \xi + \ln \left(\frac{1}{\xi+1} \right).$$

SOLUÇÃO DA QUESTÃO:

$$G(x,\xi)\frac{\mathrm{d}y}{\mathrm{d}\xi}-G(x,\xi)\frac{\xi}{\xi+1}y=G(x,\xi)f(\xi)$$

$$\int_0^\infty G(x,\xi)\frac{\mathrm{d}y}{\mathrm{d}\xi}\,\mathrm{d}\xi-\int_0^\infty G(x,\xi)\frac{\xi}{\xi+1}y\,\mathrm{d}\xi=\int_0^\infty G(x,\xi)f(\xi)\,\mathrm{d}\xi$$

$$G(x,\xi)y(\xi)\Big|_{\xi=0}^{\xi=\infty}-\int_0^\infty\frac{\mathrm{d}G}{\mathrm{d}\xi}y\,\mathrm{d}\xi-\int_0^\infty G(x,\xi)\frac{\xi}{\xi+1}y\,\mathrm{d}\xi=\int_0^\infty G(x,\xi)f(\xi)\,\mathrm{d}\xi$$

$$G(x,\infty)y(\infty)-G(x,0)y(0)-\int_0^\infty\left[\frac{\mathrm{d}G}{\mathrm{d}\xi}+\frac{\xi}{\xi+1}G\right]y(\xi)\,\mathrm{d}\xi=\int_0^\infty G(x,\xi)f(\xi)\,\mathrm{d}\xi$$

Nesse ponto, nós desejamos:

$$G(x, \infty) = 0,$$

$$\frac{\mathrm{d}G}{\mathrm{d}\xi} + \frac{\xi}{\xi+1}G = \delta(\xi-x).$$

Façamos $G(x, \xi) = u(x, \xi)v(x, \xi)$:

$$\left[u\frac{\mathrm{d}v}{\mathrm{d}\xi} + v\frac{\mathrm{d}u}{\mathrm{d}\xi}\right] + \frac{\xi}{\xi+1}uv = \delta(\xi-x),$$

$$u\left[\frac{\mathrm{d}v}{\mathrm{d}\xi} + \frac{\xi}{\xi+1}v\right] + v\frac{\mathrm{d}u}{\mathrm{d}\xi} = \delta(\xi-x)$$

$$\frac{\mathrm{d}v}{\mathrm{d}\xi} = -v\frac{\xi}{\xi+1}$$

$$\frac{\mathrm{d}v}{v} = -\frac{\xi}{\xi+1}\mathrm{d}\xi$$

$$\int_{v(x,0)}^{v(x,\xi)} \frac{\mathrm{d}v}{v} = -\int_{\eta=0}^{\xi} \frac{\eta}{\eta+1} \,\mathrm{d}\eta$$

$$\ln \frac{v(x,\xi)}{v(x,0)} = -\int_{u=1}^{\xi+1} \frac{u-1}{u} \,\mathrm{d}u$$

$$= -\int_{u=1}^{\xi+1} \left(1 - \frac{1}{u}\right) \,\mathrm{d}u$$

$$= -\left[u - \ln(u)\right]_{1}^{\xi+1} = -\xi + \ln(\xi+1);$$

$$\ln \frac{v(x,\xi)}{v(x,0)} = -\xi + \ln(\xi+1);$$

$$\frac{v(x,\xi)}{v(x,0)} = \exp\left[-\xi + \ln(\xi+1)\right],$$

$$v(x,\xi) = v(x,0)e^{-\xi}(\xi+1).$$

Seguimos para *u*:

$$v(x,0)e^{-\xi}(\xi+1)\frac{\mathrm{d}u}{\mathrm{d}\xi} = \delta(\xi-x),$$

$$\frac{\mathrm{d}u}{\mathrm{d}\xi} = \frac{1}{v(x,0)}e^{+\xi}\frac{1}{(\xi+1)}\delta(\xi-x);$$

$$\mathrm{d}u = \frac{1}{v(x,0)}e^{\xi}\frac{1}{(\xi+1)}\delta(\xi-x)\,\mathrm{d}\xi;$$

$$\int_{u(x,0)}^{u(x,\xi)}\mathrm{d}u = \frac{1}{v(x,0)}\int_{\eta=0}^{\xi}e^{\eta}\frac{1}{(\eta+1)}\delta(\eta-x)\,\mathrm{d}\eta,$$

$$u(x,\xi) = u(x,0) + \frac{1}{v(x,0)}H(\xi-x)\left(e^{x}\frac{1}{(x+1)}\right).$$

$$G(x,\xi) = u(x,\xi)v(x,\xi) = \left[u(x,0) + \frac{1}{v(x,0)}H(\xi-x)\left(e^{x}\frac{1}{(x+1)}\right)\right]v(x,0)e^{-\xi}(\xi+1)$$

$$= G(x,0)e^{-\xi}(\xi+1) + H(\xi-x)e^{x-\xi}\frac{\xi+1}{x+1}.$$

Isso já nos permite avaliar o comportamento de $G(x, \infty)$:

$$G(x, \infty) = e^{-\xi} (\xi + 1) \left[G(x, 0) + \frac{e^x}{(x+1)} \right],$$

$$G(x, 0) = -\frac{e^x}{(x+1)}.$$

Finalmente,

$$G(x,\xi) = e^{-\xi}(\xi+1) \left[\frac{e^x}{(x+1)} (H(\xi-x)-1) \right]$$

2 [25] Obtenha todos os autovalores do problema de Sturm-Liouville

$$y'' + \lambda y = 0,$$

 $y'(0) = 0,$
 $y'(1) = 0.$

SOLUÇÃO DA QUESTÃO:

Se $\lambda < 0$, faça $\lambda = -k^2$ para k > 0;

$$r^{2} - k^{2} = 0,$$

$$r = \pm k,$$

$$y(x) = A \cosh(kx) + B \operatorname{senh}(kx),$$

$$y'(x) = k \left[A \operatorname{senh}(kx) + B \cos(kx) \right].$$

As condições de contorno homogêneas produzem

$$y'(0) = kB \implies B = 0,$$

 $y'(1) = k[A \operatorname{senh}(k) + B \operatorname{cosh}(k)] = kA \operatorname{senh}(k) \implies A = 0.$

Portanto, a única solução possível é A = B = 0, e $\lambda < 0$ não pode ser autovalor.

Para $\lambda = 0$,

$$y'' = 0,$$

$$y(x) = Ax + B,$$

$$y'(x) = A.$$

As condições de contorno homogêneas produzem

$$y'(0) = 0 \implies A = 0,$$

 $y'(1) = 0 \implies A = 0,$

Portanto A=0, e B é qualquer valor. $\lambda=0$ é autovalor, e uma autofunção associada é $y_0=1$.

Para $\lambda > 0$, faça $\lambda = k^2$, para k > 0:

$$r^{2} + k^{2} = 0,$$

$$r^{2} = -k^{2},$$

$$r = \pm ki,$$

$$y(x) = A\cos(kx) + B\sin(kx),$$

$$y'(x) = k \left[-A\sin(kx) + B\cos(kx) \right].$$

As condições de contorno homogêneas produzem

$$y'(0) = kB = 0 \implies B = 0,$$

 $y'(1) = k[-A \operatorname{sen}(k) + B \cos(k)] = -kA \operatorname{sen}(k) = 0;$

ou

$$sen(k) = 0,$$

 $k = n\pi, \ n = 1, 2, 3, \dots$

Os autovalores não-nulos portanto são

$$\lambda_n = n^2 \pi^2, \qquad n = 1, 2, 3, \dots$$

e as autofunções correspondentes são

$$y_n(x) = \cos(n\pi x) \blacksquare$$

3 [25] Utilizando o método de separação de variáveis, resolva

$$\frac{\partial \phi}{\partial t} = \alpha^2 \frac{\partial^2 \phi}{\partial x^2},$$
$$\phi(0, t) = \phi_0,$$
$$\frac{\partial \phi(L, t)}{\partial x} = 0,$$
$$\phi(x, 0) = f(x).$$

Sugestão: As condições de contorno não são homogêneas. Isso pode ser resolvido com a transformação

$$\begin{split} \psi(x,t) &= \phi(x,t) - \phi_0 \implies \\ \frac{\partial \psi}{\partial x} &= \frac{\partial \phi}{\partial x}, \qquad \frac{\partial \psi}{\partial t} &= \frac{\partial \phi}{\partial t}, \\ \frac{\partial \psi}{\partial t} &= \alpha^2 \frac{\partial^2 \psi}{\partial x^2}, \\ \psi(0,t) &= 0, \\ \frac{\partial \psi(L,t)}{\partial x} &= 0, \\ \psi(x,0) &= f(x) - \phi_0. \end{split}$$

SOLUÇÃO DA QUESTÃO:

Fazemos agora $\psi(x, t) = X(x)T(t)$; a equação fica

$$X\frac{\mathrm{d}T}{\mathrm{d}t} = \alpha^2 \frac{\mathrm{d}^2 X}{\mathrm{d}x^2};$$
$$\frac{1}{\alpha^2 T} \frac{\mathrm{d}T}{\mathrm{d}t} = \frac{1}{X} \frac{\mathrm{d}^2 X}{\mathrm{d}x^2} = \lambda.$$

O problema de Sturm-Liouville é

$$\frac{d^2X}{dx^2} - \lambda X = 0, \qquad X(0) = 0, \ X'(L) = 0.$$

O problema é difusivo. É razoável proibir $\lambda > 0$. Sempre vale a pena, entretanto, testar $\lambda = 0$: a solução é do tipo

$$X(x) = A + Bx;$$

$$X(0) = 0 \Rightarrow A = 0,$$

$$X'(L) = 0 \Rightarrow B = 0.$$

Portanto, $\lambda = 0$ não pode ser autovalor. Para $\lambda = -k^2 < 0$, com k > 0, a solução é do tipo

$$X(x) = A\cos(kx) + B\sin(kx),$$

$$X'(x) = k [-A\sin(kx) + B\cos(kx)]$$

Impondo as condições de contorno,

$$X(0) = 0 \Rightarrow A = 0,$$

$$X'(L) = 0 \Rightarrow kB\cos(kL) = 0;$$

$$\cos(kL) = 0 \Rightarrow$$

$$kL = -\frac{\pi}{2} + n\pi = \frac{(2n-1)\pi}{2L};$$

$$\lambda_n = -\frac{(2n-1)^2\pi^2}{4L^2}.$$

A equação em $T_n(t)$ é

$$\begin{split} \frac{1}{\alpha^2 T_n} \frac{\mathrm{d} T_n}{\mathrm{d} t} &= -\frac{(2n-1)^2 \pi^2}{4L^2}; \\ \frac{\mathrm{d} T_n}{T_n} &= -\frac{\alpha^2 (2n-1)^2 \pi^2}{4L^2} \, \mathrm{d} t; \\ T_n(t) &= T_0 \exp \left[-\frac{\alpha^2 (2n-1)^2 \pi^2}{4L^2} t \right]. \end{split}$$

A solução geral é da forma

$$\psi(x,t) = \sum_{n=1}^{\infty} B_n e^{-\frac{(2n-1)^2 \pi^2}{4L^2} t} \operatorname{sen}\left(\frac{(2n-1)\pi x}{2L}\right).$$

Em t = 0:

$$f(x) - \phi_0 = \sum_{n=1}^{\infty} B_n \operatorname{sen}\left(\frac{(2n-1)\pi x}{2L}\right),$$

$$[f(x) - \phi_0] \operatorname{sen}\left(\frac{(2m-1)\pi x}{2L}\right) = \sum_{n=1}^{\infty} B_n \operatorname{sen}\left(\frac{(2n-1)\pi x}{2L}\right) \operatorname{sen}\left(\frac{(2m-1)\pi x}{2L}\right),$$

$$\int_0^L [f(x) - \phi_0] \operatorname{sen}\left(\frac{(2m-1)\pi x}{2L}\right) dx = B_m \int_0^L \operatorname{sen}^2\left(\frac{(2m-1)\pi x}{2L}\right) dx,$$

$$B_m = \frac{2}{L} \int_0^L [f(x) - \phi_0] \operatorname{sen}\left(\frac{(2m-1)\pi x}{2L}\right) dx \blacksquare$$

$$\frac{\partial \phi}{\partial t} + \operatorname{senh}(t) \frac{\partial \phi}{\partial x} = x, \qquad \phi(x, 0) = f(x).$$

SOLUÇÃO DA QUESTÃO:

Faça $\phi(x, t) = F(s)$ sobre x = X(s) e t = T(s):

$$\phi(X(s), T(s)) = F(s);$$

$$\frac{dF}{ds} = \frac{\partial \phi}{\partial t} \frac{dT}{ds} + \frac{\partial \phi}{\partial x} \frac{dX}{ds};$$

$$\frac{dT}{ds} = 1 \Rightarrow T(s) = \underbrace{T(0)}_{\equiv 0} + s,$$

$$\frac{dX}{ds} = \operatorname{senh}(t) = \operatorname{senh}(s),$$

$$\int_{X(0)}^{X(s)} d\xi = \int_{0}^{s} \operatorname{senh}(\tau) d\tau,$$

$$X(s) - X(0) = \cosh(s) - 1 \Rightarrow X(s) = X(0) + \cosh(s) - 1.$$

Mas

$$\frac{\partial \phi}{\partial t} + \operatorname{senh}(t) \frac{\partial \phi}{\partial x} = x,$$

$$\frac{\mathrm{d}F}{\mathrm{d}s} = X(s) = X(0) + \cosh(s) - 1,$$

$$\mathrm{d}F = [X(0) + \cosh(s) - 1] \, \mathrm{d}s,$$

$$\int_{\xi=0}^{s} \mathrm{d}F = \int_{\xi=0}^{s} [X(0) - 1 + \cosh(s)] \, \mathrm{d}\xi$$

$$F(s) - F(0) = [X(0) - 1]s + \operatorname{senh}(s) - \operatorname{senh}(0)^{-0}$$

$$\phi(x, t) = \phi(X(s), T(s))$$

$$= F(s) = F(0) + [X(0) - 1]s + \operatorname{senh}(s)$$

$$= \phi(X(0), T(0)) + [X(0) - 1]s + \operatorname{senh}(s)$$

$$= f(X(0)) + [(X(s) - \cosh(s) + 1) - 1]s + \operatorname{senh}(s)$$

$$= f(x - \cosh(t) + 1) + (x - \cosh(t))t + \operatorname{senh}(t) = t$$

TEA013 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P04A, 10 fev 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Se

$$\widehat{g}(k) = \begin{cases} \frac{1}{2\pi} & |k| \le k_0, \\ 0 & |k| > k_0, \end{cases}$$

calcule g(x), onde $g(x) \leftrightarrow \widehat{g}(k)$ são um par de transformadas direta e inversa de Fourier.

SOLUÇÃO DA QUESTÃO:

Prof. Nelson Luís Dias

$$g(x) = \int_{k=-\infty}^{+\infty} \widehat{g}(k) e^{+ikx} dk$$

$$= \int_{-k_0}^{+k_0} \frac{1}{2\pi} e^{+ikx} dk$$

$$= \frac{1}{2\pi i x} \int_{-ik_0 x}^{+ik_0 x} e^{+ikx} d(ikx)$$

$$= \frac{1}{2\pi i x} \left[e^{ik_0 x} - e^{-ik_0 x} \right]$$

$$= \frac{1}{2\pi i x} \left[(\cos(k_0 x) + i \sin(k_0 x)) - (\cos(k_0 x) - i \sin(k_0 x)) \right]$$

$$= \frac{2i}{2\pi i x} \sin(k_0 x) = \frac{\sin(k_0 x)}{\pi x} \blacksquare$$

 $\mathbf{2}$ [25] Se L é um operador linear, define-se seu operador adjunto $L^{\#}$ por

$$\langle L^{\#} \cdot x, y \rangle \equiv \langle x, L \cdot y \rangle, \quad \forall x, y \in \mathbb{V},$$

onde $\mathbb V$ é um espaço vetorial. Calcule $(\alpha L)^\#$ em função de α e de $L^\#$, onde $\alpha \in \mathbb C$.

SOLUÇÃO DA QUESTÃO:

$$\langle (\alpha L)^{\#} \cdot x, y \rangle = \langle x, \alpha L \cdot y \rangle$$

$$= \alpha \langle x, L \cdot y \rangle$$

$$= \alpha \langle L^{\#} \cdot x, y \rangle$$

$$= \langle (\alpha^* L^{\#}) \cdot x, y \rangle,$$

donde

$$(\alpha \mathbf{L})^{\#} = \alpha^* L^{\#} \blacksquare$$

$$y'' + \lambda y = 0,$$

$$y'(0) = 0,$$

$$y(1) = 0,$$

obtenha todos os autovalores λ .

SOLUÇÃO DA QUESTÃO:

Estudamos os sinais de λ :

Caso I: $\lambda = -k^2 < 0$:

$$y'' - k^2 y = 0,$$

 $r^2 - k^2 = 0,$
 $r = \pm k,$
 $y(x) = A \cosh(kx) + B \sinh(kx),$
 $y'(x) = k [A \sinh(x) + B \cosh(kx)],$
 $y'(0) = kB = 0,$
 $y(1) = A \cosh(k) + B \sinh(k) = 0.$

Portanto, B=0, A=0 e $\lambda < 0$ não pode ser autovalor.

Caso II: $\lambda = 0$:

$$y'' = 0,$$

 $y(x) = Ax + B,$
 $y'(x) = A,$
 $y'(0) = A = 0,$
 $y(1) = A + B = 0$

Portanto, A = 0, B = 0, e $\lambda = 0$ não pode ser autovalor. Caso III: $\lambda = k^2 > 0$:

$$y'' + k^{2}y = 0,$$

$$r^{2} + k^{2} = 0,$$

$$r^{2} = -k^{2},$$

$$r = \pm i,$$

$$y(x) = A\cos(kx) + B\sin(kx),$$

$$y'(x) = k [-A\sin(kx) + B\cos(kx)],$$

$$y'(0) = kB = 0,$$

$$y(1) = A\cos(k) + B\sin(k) = 0;$$

Portanto, B = 0 e devemos ter

$$A\cos(k) = 0,$$

$$\cos(k) = 0,$$

$$k_n = \frac{\pi}{2} + n\pi, \qquad n = 0, 1, 2, \dots$$

$$\lambda_n = \left[\frac{\pi}{2} + n\pi\right]^2, \qquad n = 0, 1, 2, \dots \blacksquare$$

4 [25] Encontre $\phi(x, y)$ pelo método das características:

$$\frac{\partial \phi}{\partial x} + y \frac{\partial \phi}{\partial y} = 0, \qquad \phi(0, y) = g(y).$$

SOLUÇÃO DA QUESTÃO:

Faça x = X(s) e y = Y(x):

$$\phi(x,y) = \phi(X(s), Y(s)) = F(s);$$

$$\frac{dF}{ds} = \frac{\partial \phi}{\partial x} \frac{dX}{ds} + \frac{\partial \phi}{\partial y} \frac{dY}{ds} = 0;$$

$$\frac{dX}{ds} = 1 \implies X(s) = X(0) + s,$$

$$\frac{dY}{ds} = y = Y(s) \implies$$

$$Y(s) = Y(0)e^{s},$$

$$Y(0) = Y(s)e^{-s}.$$

Mas

$$\frac{dF}{ds} = 0 \implies F(s) = F(0) = \phi(X(0), Y(0)) = \phi(0, Y(0)) = g(Y(0)).$$

$$\phi(x, y) = F(s) = g(Y(0)) = g(Y(s)e^{-s}) = g(ye^{-x}) \blacksquare$$

TEA013 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P04B, 15 fev 2023

()

Prof. Nelson Luís Dias Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Calcule a transformada de Fourier de

$$f(x) = \begin{cases} 0, & |x| > 1, \\ x+1 & -1 \le x \le 0, \\ 1-x & 0 < x \le 1. \end{cases}$$

SOLUÇÃO DA QUESTÃO: Note que f é par.

$$\mathscr{F}\left\{f(x)\right\} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) \left[\cos(kx) - i\sin(kx)\right] dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) \cos(kx) dx$$

$$= \frac{1}{\pi} \int_{0}^{1} f(x) \cos(kx) dx = \frac{1 - \cos k}{\pi k^{2}} \blacksquare$$

$$\mathscr{F}[\delta(x)] = \widehat{\delta}(k) = \frac{1}{2\pi} \int_{x = -\infty}^{+\infty} \delta(x) e^{-ikx} dx = \frac{1}{2\pi} \blacksquare$$

$$y'' + \lambda y = 0,$$

$$y(0) = 0,$$

$$y(1) = 0,$$

obtenha todos os autovalores λ .

SOLUÇÃO DA QUESTÃO:

Estudamos os sinais de λ :

Caso I: $\lambda = -k^2 < 0$:

$$y'' - k^2 y = 0,$$

$$r^2 - k^2 = 0,$$

$$r = \pm k,$$

$$y(x) = A \cosh(kx) + B \operatorname{senh}(kx),$$

$$y(0) = A = 0,$$

$$y(1) = B \operatorname{senh}(k) = 0 \Rightarrow B = 0.$$

Portanto, A=0, B=0 e $\lambda < 0$ não pode ser autovalor. Caso II: $\lambda = 0$:

$$y'' = 0,$$

 $y(x) = Ax + B,$
 $y(0) = B = 0,$
 $y(1) = A = 0.$

Portanto, A = 0, B = 0, e $\lambda = 0$ não pode ser autovalor. Caso III: $\lambda = k^2 > 0$:

$$y'' + k^2y = 0,$$

 $r^2 + k^2 = 0,$
 $r^2 = -k^2,$
 $r = \pm i,$
 $y(x) = A\cos(kx) + B\sin(kx),$
 $y(0) = A = 0,$
 $y(1) = B\sin(k) = 0;$

Devemos ter

$$\operatorname{sen}(k) = 0,$$

 $k_n = n\pi, \qquad n = 1, 2, \dots$
 $\lambda_n = [n\pi]^2, \qquad n = 1, 2, 3, \dots$

4 [25] Considere a equação diferencial parcial

$$\frac{\partial^2 \phi}{\partial x^2} - \frac{1}{\alpha^2} \frac{\partial \phi}{\partial t} = -kx,$$

$$\phi(0, t) = \phi(L, t) = 0,$$

$$\phi(x, 0) = 0.$$

Obtenha uma solução da forma

$$\phi(x,t) = \psi(x,t) + u(x),$$

onde ψ é uma solução da equação da difusão homogênea (sem o termo -kx) com $\psi(0,t)=\psi(L,t)=0$, e u(x) uma solução de regime permanente com u(0)=u(L)=0, que não depende de t.

Você pode deixar a solução indicada em termos de integrais envolvendo u(x).

SOLUÇÃO DA QUESTÃO:

A solução u(x), independente do tempo, deve atender a

$$\frac{d^2u}{dx^2} + kx = 0,$$
 $u(0) = u(L) = 0.$

A solução é

$$\frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{kx^2}{2} + A,$$

$$u(x) = -\frac{kx^3}{6} + Ax + B$$

A CC u(0) = 0 leva a B = 0; a CC u(L) = 0 leva a

$$0 = -\frac{kL^3}{6} + AL,$$

$$A = \frac{kL^2}{6},$$

$$u(x) = \frac{k}{6} \left[x(L^2 - x^2) \right].$$

Como fica o problema em ψ ?

$$\frac{\partial^{2} [\psi + u]}{\partial x^{2}} - \frac{1}{\alpha^{2}} \frac{\partial [\psi + u]}{\partial t} + kx = 0,$$
$$\underbrace{\left[\frac{\mathrm{d}^{2} u}{\mathrm{d}x^{2}} + kx\right]}_{=0} + \frac{\partial^{2} \psi}{\partial x^{2}} - \frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} = 0.$$

Restou, portanto, a equação clássica da difusão em uma dimensão. As condições de contorno e iniciais em ψ são:

$$\begin{aligned} 0 &= \phi(0,t) = \psi(0,t) + u(0) & \Rightarrow & \psi(0,t) = 0, \\ 0 &= \phi(L,t) = \psi(0,t) + u(L) & \Rightarrow & \psi(L,t) = 0, \\ 0 &= \psi(x,0) + \frac{k}{6} \left[x(L^2 - x^2) \right] & \Rightarrow & \psi(x,0) = -\frac{k}{6} \left[x(L^2 - x^2) \right]. \end{aligned}$$

Este portanto é um problema de valor de contorno e inicial (a equação da onda) perfeitamente bem especificado. Separando as variáveis em ψ :

$$X''T = \frac{1}{\alpha^2}XT'$$
$$\frac{X''}{X} = \frac{1}{\alpha^2}\frac{T'}{T} = \lambda$$

Existe agora um problema de Sturm-Liouville em x clássico, e após a usual discussão de sinais obtém-se

$$\lambda_n = -\frac{n^2\pi^2}{L^2}, \qquad X_n(x) = \operatorname{sen}\frac{n\pi x}{L}.$$

As soluções para ψ , portanto, deverão ser do tipo

$$\psi(x,t) = \sum_{n=1}^{\infty} A_n \exp\left[-\frac{\alpha^2 n^2 \pi^2}{L^2}\right] \operatorname{sen} \frac{n\pi x}{L}.$$

Agora,

$$\psi(x,0) = -\frac{k}{6} \left[x(L^2 - x^2) \right],$$

$$-\frac{k}{6} \left[x(L^2 - x^2) \right] = \sum_{n=1}^{\infty} A_n \operatorname{sen} \frac{n\pi x}{L} \Rightarrow$$

$$-\int_0^L \frac{k}{6} \left[x(L^2 - x^2) \right] \operatorname{sen} \frac{m\pi x}{L} dx = A_m \frac{L}{2},$$

$$A_m = \frac{2k(-1)^m L^3}{m^3 \pi^3}.$$

A solução completa portanto é

$$\phi(x,t) = \frac{k}{6}x(L^2 - x^2) + \sum_{n=1}^{\infty} \frac{2k(-1)^n L^3}{n^3 \pi^3} \exp\left[-\frac{\alpha^2 n^2 \pi^2}{L^2}\right] \sin\left(\frac{n\pi x}{L}\right) \blacksquare$$

TEA013 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
FA, 27 fev 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Calcule a difusividade numérica introduzida pelo esquema *upwind* explícito

$$\frac{u_i^{n+1} - u_i^n}{\Lambda t} + c \frac{u_i^n - u_{i-1}^n}{\Lambda x} = 0.$$

Sugestão: note que

Prof. Nelson Luís Dias

$$\begin{split} \frac{u_i^n - u_{i-1}^n}{\Delta x} &= \frac{2u_i^n}{2\Delta x} - \frac{u_{i-1}^n}{\Delta x} \\ &= \frac{2u_i^n}{2\Delta x} - \frac{1}{2} \frac{u_{i-1}^n}{\Delta x} - \frac{1}{2} \frac{u_{i-1}^n}{\Delta x} + \frac{u_{i+1}^n}{2\Delta x} - \frac{u_{i+1}^n}{2\Delta x} \\ &= \frac{-u_{i+1}^n + 2u_i^n - u_{i-1}^n}{2\Delta x} + \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x}. \end{split}$$

SOLUÇÃO DA QUESTÃO:

Reescrevemos o termo advectivo utilizando o resultado da sugestão:

$$\begin{split} \frac{u_i^{n+1}-u_i^n}{\Delta t} + c \left[\frac{-u_{i+1}^n + 2u_i^n - u_{i-1}^n}{2\Delta x} + \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} \right] &= 0, \\ \frac{u_i^{n+1}-u_i^n}{\Delta t} + c \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} &= c \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{2\Delta x}, \\ \frac{u_i^{n+1}-u_i^n}{\Delta t} + c \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} &= D \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2}, \\ D &= \frac{c\Delta x}{2}. \end{split}$$

Portanto, o esquema é equivalente a uma discretização numérica da equação de advecção-difusão, com difusividade numérica dada pela penúltima linha acima

2 [25] Se o produto interno entre duas funções complexas de uma variável real no intervalo fechado [1,2] for definido como

$$\langle f, g \rangle = \int_{1}^{2} f^{*}(x)g(x)w(x) dx$$

com $w(x) = \ln(x)$, calcule $\langle x, x^2 \rangle$.

$$\langle x, x^2 \rangle = \int_1^2 x^3 \ln(x) \, dx$$

$$= \int_1^2 \underbrace{\ln(x)}_u \underbrace{x^3 \, dx}_{dv}$$

$$= \frac{x^4 \ln(x)}{4} \Big|_1^2 - \int_1^2 \frac{x^4}{4} \frac{1}{x} \, dx$$

$$= \frac{16}{4} \ln 2 - \frac{1}{16} x^4 \Big|_1^2$$

$$= 4 \ln 2 - \frac{1}{16} [16 - 1]$$

$$= 4 \ln 2 - 15/16 \blacksquare$$

$$f(x) = x, \ 0 \le x \le 1.$$

SOLUÇÃO DA QUESTÃO:

O problema se resume ao cálculo dos $c_n s \mod L = 1 - 0 = 1$,

$$c_n = \int_0^1 x \mathrm{e}^{-(2\pi \mathrm{i} n x)} \, \mathrm{d} x.$$

Integrando por partes,

$$c_n = -\frac{1-2\pi \mathrm{i} n - 1}{4\pi^2 n^2} = \frac{2\pi \mathrm{i} n}{4\pi^2 n^2} = \frac{\mathrm{i}}{2\pi n}, \ n \neq 0.$$

É evidente que o cálculo para n = 0 tem que ser feito separadamente:

$$c_0 = \int_0^1 x \, \mathrm{d}x = \frac{1}{2}.$$

O resultado é

$$x = \frac{1}{2} + \sum_{n = -\infty, n \neq 0}^{\infty} \frac{\mathrm{i}}{2\pi n} \mathrm{e}^{2\pi \mathrm{i} nx} \blacksquare$$

4 [25] Resolva a equação diferencial parcial

$$\frac{\partial \phi}{\partial t} = a^2 \frac{\partial^2 \phi}{\partial x^2},$$

com condições inicial e de contorno

$$\phi(x,0) = \phi_0 \operatorname{sen}\left(\frac{\pi x}{L}\right),$$

$$\phi(0,t) = 0,$$

$$\frac{\partial \phi}{\partial x}(L,t) = 0.$$

Você pode usar as fórmulas a seguir (se forem, e as que forem, úteis) sem demonstração.

$$\int_0^L \sin^2\left(\frac{n\pi x}{L}\right) = \frac{L}{2}$$

$$\int_0^L \sin^2\left(\frac{(2n-1)\pi x}{2L}\right) dx = \frac{L}{2}$$

$$\int_0^L \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) = 0, \quad n > 1$$

$$\int_0^L \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{(2n-1)\pi x}{2L}\right) = \frac{4L(-1)^{n-1}}{3\pi + 4\pi n - 4\pi n^2}$$

$$\int_0^L \cos\left(\frac{\pi x}{L}\right) \cos\left(\frac{(2n-1)\pi x}{2L}\right) = \frac{2(2n-1)(-1)^n L}{\pi (2n-3)(2n+1)}$$

SOLUÇÃO DA QUESTÃO:

Faça $\phi = X(x)T(t)$:

$$XT' = a^2 X''T,$$

$$\frac{1}{a^2} \frac{T'}{T} = \frac{X''}{X} = -\lambda.$$

É evidente que há um problema de Sturm-Liouville nos esperando em X, mas ganharemos um pouco de tempo resolvendo em T primeiro, e raciocinando fisicamente:

$$\frac{dT}{dt} = -\lambda a^2 T,$$

$$\frac{dT}{T} = -\lambda a^2 dt$$

$$\ln \frac{T}{T_0} = -\lambda a^2 t$$

$$T(t) = T_0 \exp(-\lambda a^2 t).$$

É evidente que não podemos deixar que a solução exploda para $t \to \infty$: $\lambda < 0$ não é aceitável; $\lambda = 0$ também não funciona, porque neste caso a solução permaneceria constante (é evidente que o perfil inicial $\phi(x,0)$ deve se abater, forçado pela condição de contorno esquerda). Segue-se que $\lambda > 0$. Além disto, sem perda de generalidade faremos $T_0 = 1$. O problema de Sturm-Liouville em X é

$$\frac{\mathrm{d}^2 X}{\mathrm{d}x^2} + \lambda X = 0,$$
$$X(0) = 0,$$
$$\frac{\mathrm{d}X}{\mathrm{d}x}(L) = 0.$$

A solução geral é

$$X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x),$$

$$\frac{dX}{dx} = \sqrt{\lambda} \left[-A\sin(\sqrt{\lambda}x) + B\cos(\sqrt{\lambda}x) \right].$$

A condição de contorno esquerda (em x = 0) impõe A = 0; a condição de contorno direita (em x = L) impõe

$$\cos(\sqrt{\lambda}L) = 0,$$

$$\sqrt{\lambda_n}L = (2n-1)\frac{\pi}{2},$$

$$\lambda_n = \left(\frac{2n-1}{L}\right)^2 \frac{\pi^2}{4}.$$

As autofunções são

$$\phi_n(x) = \operatorname{sen}\left(\frac{(2n-1)\pi x}{2L}\right).$$

A solução do problema de Sturm-Liouville dá conta das condições de contorno, e agora nós nos voltamos para a condição inicial. A solução geral deve ser da forma

$$\phi(x,t) = \sum_{n=1}^{\infty} B_n \sec \left(\frac{(2n-1)\pi x}{2L} \right) \exp \left(-\frac{(2n-1)^2 a^2 \pi^2 t}{4L^2} \right).$$

Para atender à condição inicial, devemos ter

$$\phi_0 \operatorname{sen}\left(\frac{\pi x}{L}\right) = \sum_{n=1}^{\infty} B_n \operatorname{sen}\left(\frac{(2n-1)\pi x}{2L}\right),$$

$$\phi_0 \int_0^L \operatorname{sen}\left(\frac{\pi x}{L}\right) \operatorname{sen}\left(\frac{(2m-1)\pi x}{2L}\right) dx =$$

$$\sum_{n=1}^{\infty} B_n \int_0^L \operatorname{sen}\left(\frac{(2n-1)\pi x}{2L}\right) \operatorname{sen}\left(\frac{(2m-1)\pi x}{2L}\right) dx,$$

$$\phi_0 \int_0^L \operatorname{sen}\left(\frac{\pi x}{L}\right) \operatorname{sen}\left(\frac{(2m-1)\pi x}{2L}\right) dx = B_m \int_0^L \operatorname{sen}^2\left(\frac{(2n-1)\pi x}{2L}\right) dx \implies$$

$$B_m = \frac{2}{L} \frac{4\phi_0 L(-1)^n}{3\pi + 4\pi n - 4\pi n^2}$$

$$= \frac{8\phi_0(-1)^n}{3\pi + 4\pi n - 4\pi n^2} \blacksquare$$

TEA013 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
FB, 03 mar 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Um esquema regressivo (*upwind*) de ordem 2. Expanda em série de Taylor u(x,t) desde x_i até x_{i-1} e x_{i-2} (igualmente espaçados de Δx) até a ordem 2, elimine $\partial^2 u/\partial x^2$ e encontre uma aproximação de diferenças finitas para $\partial u/\partial x|_{x_i}$ cujo erro é $O(\Delta x^2)$.

SOLUÇÃO DA QUESTÃO:

Prof. Nelson Luís Dias

$$u_{i-1} = u_i - \frac{\partial u}{\partial x} \bigg|_i \Delta x + \frac{\partial^2 u}{\partial x^2} \bigg|_i \frac{\Delta x^2}{2} + O(\Delta x^3),$$

$$u_{i-2} = u_i - \frac{\partial u}{\partial x} \bigg|_i 2\Delta x + \frac{\partial^2 u}{\partial x^2} \bigg|_i \frac{(2\Delta x)^2}{2} + O(\Delta x^3).$$

Para eliminar $\partial^2 u/\partial x^2$, multiplicamos a primeira equação acima por 4, e subtraímos:

$$\begin{aligned} 4u_{i-1} &= 4u_i - \frac{\partial u}{\partial x}\bigg|_i 4\Delta x + \frac{\partial^2 u}{\partial x^2}\bigg|_i 2\Delta x^2 + O(\Delta x^3), \\ u_{i-2} &= u_i - \frac{\partial u}{\partial x}\bigg|_i 2\Delta x + \frac{\partial^2 u}{\partial x^2}\bigg|_i 2\Delta x^2 + O(\Delta x^3), \\ 4u_{i-1} - u_{i-2} &= 3u_i - 2\frac{\partial u}{\partial x}\bigg|_i \Delta x + O(\Delta x^3); \\ \frac{\partial u}{\partial x}\bigg|_i &= \frac{3u_i - 4u_{i-1} + u_{i-2}}{2\Delta x} + O(\Delta x^2) \blacksquare \end{aligned}$$

2 [25] Sejam $x, y \in \mathbb{R}^n$ tais que

$$x = (a_1, a_2, ..., a_n),$$

 $y = (1, 1, ..., 1),$
 $\sum_{i=1}^{n} a_i = 1.$

Usando a desigualdade de Cauchy-Schwarz, prove que

$$\sum_{i=1}^n a_i^2 \ge \frac{1}{n}.$$

$$\left| \sum_{i=1}^{n} (a_i \times 1) \right|^2 \le \left(\sum_{i=1}^{n} a_i^2 \right) \left(\sum_{i=1}^{n} 1^2 \right),$$

$$1 \le n \left(\sum_{i=1}^{n} a_i^2 \right),$$

$$\sum_{i=1}^{n} a_i^2 \ge \frac{1}{n} \blacksquare$$

3 [25] Ache a série trigonométrica de Fourier (isto é: a série em senos e cossenos) de

$$f(x) = \begin{cases} 0, & -1 \le x < 0, \\ x, & 0 \le x \le 1. \end{cases}$$

SOLUÇÃO DA QUESTÃO:

$$f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos\left(\frac{2n\pi x}{L}\right) + B_n \sin\left(\frac{2n\pi x}{L}\right) \right],$$

$$A_n = \frac{2}{L} \int_a^b f(\xi) \cos\left(\frac{2n\pi \xi}{L}\right) d\xi,$$

$$B_n = \frac{2}{L} \int_a^b f(\xi) \sin\left(\frac{2n\pi \xi}{L}\right) d\xi.$$

Prosseguindo no cálculo dos coeficientes,

$$A_0 = \frac{2}{2} \int_0^1 x \, \mathrm{d}x = \frac{1}{2},$$

$$A_n = \int_0^1 \xi \cos\left(\frac{2n\pi\xi}{L}\right) \, \mathrm{d}\xi = \frac{\cos(n\pi) - 1}{\pi^2 n^2},$$

$$B_n = \int_0^1 \xi \sin\left(\frac{2n\pi\xi}{L}\right) \, \mathrm{d}\xi = -\frac{\cos(n\pi)}{\pi n} \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} - 2xy = \mathrm{sen}(x), \ y(0) = 3.$$

SOLUÇÃO DA QUESTÃO:

Multiplico por $G(x, \xi)$ e integro de 0 a infinito:

$$\int_{\xi=0}^{\infty} G(x,\xi) \left[\frac{\mathrm{d}y}{\mathrm{d}\xi} - 2\xi y \right] \, \mathrm{d}\xi = \int_{0}^{\infty} G(x,\xi) \, \mathrm{sen} \, \xi \, \mathrm{d}\xi$$

Integrando por partes,

$$G(x,\xi)y(\xi)\Big|_{\xi=0}^{\infty} + \int_{\xi=0}^{\infty} y(\xi) \left[-\frac{\partial G}{\partial \xi} - 2\xi G \right] d\xi = \int_{0}^{\infty} G(x,\xi) \operatorname{sen} \xi d\xi$$

$$\lim_{\xi \to \infty} G(x, \xi) = 0 \Rightarrow$$

$$-G(x, 0)y(0) + \int_{\xi=0}^{\infty} y(\xi) \left[-\frac{\partial G}{\partial \xi} - 2\xi G \right] d\xi = \int_{0}^{\infty} G(x, \xi) \operatorname{sen} \xi d\xi$$

$$-\frac{\partial G}{\partial \xi} - 2\xi G = \delta(\xi - x).$$

$$\frac{dG}{d\xi} + 2\xi G = -\delta(\xi - x).$$

Agora, G = uv, e

$$u\left[\frac{\mathrm{d}v}{\mathrm{d}\xi} + 2\xi v\right] + v\frac{\mathrm{d}u}{\mathrm{d}\xi} = -\delta(\xi - x)$$

$$\frac{\mathrm{d}v}{\mathrm{d}\xi} = -2\xi v$$

$$\frac{\mathrm{d}v}{2v} = -2\xi$$

$$\ln\left(\frac{v}{v_0(x)}\right) = -\xi^2$$

$$v = v_0(x)\exp(-\xi^2)$$

$$\frac{\mathrm{d}u}{\mathrm{d}\xi} = -\frac{\exp(\xi^2)}{v_0(x)}\delta(\xi - x)$$

$$u(\xi) = u_0(x) - \int_{\eta=0}^{\xi} \frac{\exp(\eta^2)}{v_0(x)}\delta(\eta - x)\,\mathrm{d}\eta$$

$$= u_0(x) - \frac{H(\xi - x)\exp(x^2)}{v_0(x)} \Rightarrow$$

$$G(x, \xi) = \left[u_0(x)v_0(x) - H(\xi - x)\exp(x^2)\right]\exp(-\xi^2)$$

$$= \left[G_0(x) - H(\xi - x)\exp(x^2)\right]\exp(-\xi^2).$$

Mas

$$\lim_{\xi \to \infty} G(x, \xi) = 0 \Rightarrow G_0(x) = \exp(x^2)$$

$$G(x, \xi) = [1 - H(\xi - x)] \exp(x^2 - \xi^2) \blacksquare$$